首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
乳化蒸发法制备固体脂质纳米粒   总被引:2,自引:0,他引:2  
李姜晖  王柏 《药学进展》2008,32(3):127-131
目的:采用乳化蒸发法制备固体脂质纳米粒,并考察其载药性能。方法:对影响固体脂质纳米粒质量的工艺因素和处方因素进行考察和优化设计,得到最优处方。选用模型药物酮洛芬制备载药固体脂质纳米粒,考察其包封率和体外释放行为。结果:所得固体脂质纳米粒平均粒径为(228.2±18.1)nm,多分散系数为(0.217±0.022),ξ电位为-(21.4±0.6)mV。载药固体脂质纳米粒最佳包封率为(64.1±3.3)%,体外释放行为符合Weibull模型。结论:采用乳化蒸发法制备固体脂质纳米粒是可行的。  相似文献   

2.
基于固体脂质的纳米粒(Solid lipid - based nanoparticles,SLBNs)作为新型药物传递系统比常规的药物传递系统存在优势。通常,基于固体脂质的纳米粒可以分成两种形态,即固体脂质纳米粒( Solid lipid nanoparticles, SLNs)和纳米结构脂质载体(Nanostructured lipid carriers,NLCs)。但固体脂质纳米粒与纳米结构脂质载体在基质的组成上不同,本文就基于固体脂质的纳米粒的制备技术、表征方法及应用的最新研究进展进行总结,为基于固体脂质的纳米粒进一步研究提供参考依据。  相似文献   

3.
目的 构建脂质纳米粒DLin-LNP,以EGFP-mRNA为模型药,考察DLin-LNP对于mRNA的体外递送能力。方法 采用薄膜水化法制备DLin-LNP, 并进一步制备 DLin@mRNA,对纳米粒进行表征,使用激光扫描共聚焦显微镜观察脂质纳米粒胞内的分布情况,以RM-1细胞为模型考察胞内转染情况。结果 成功制备了脂质纳米粒DLin-LNP,其粒径为(151.1±2.1) nm,空载电位为(23.7±0.5) mV。DLin-LNP在RM-1细胞中转染mRNA效率较高,其毒性远低于市售脂质体Lipo8000,且 DLin-LNP脂质纳米粒稳定性好。结论 DLin-LNP具有高转染效率和安全性,且稳定性好,可作为mRNA递送载体,为后续脂质纳米粒肿瘤治疗中的应用提供依据。  相似文献   

4.
高振东 《中国药业》2013,22(4):93-94
纳米结构脂质载体是在第1代脂质纳米粒-固体脂质纳米粒的基础上发展起来的一种新型药物给药系统,相比于传统脂质纳米粒,具有载药量高、安全性好、稳定性高等优势,故引起了国内外医药工作者的广泛关注。该文对纳米结构脂质载体的作用特点、脂质材料及稳定性、结构特征、包封率及载药量、制备方法及其应用情况进行了概述,为其在医药领域中的深度开发提供参考。  相似文献   

5.
何瑶  郭晓华 《中国药师》2018,(5):792-796
摘 要 目的:制备依托泊苷固体脂质纳米粒,并评价其对小鼠接种Lewis肺癌细胞的抑瘤率。方法: 采用热熔乳化 高压均质法制备依托泊苷固体脂质纳米粒,考察依托泊苷固体脂质纳米粒的外观、微观结构、粒径分布、Zeta电位等理化性质,评价依托泊苷固体脂质纳米粒体外释药行为,比较依托泊苷固体脂质纳米粒与依托泊苷注射液对小鼠接种Lewis肺癌细胞的抑制效果。结果:本研究制备的依托泊苷固体脂质纳米粒外观呈淡蓝色透明状液体,在透射电镜观察呈圆整球状或类球状分布,大小较为均匀;平均粒径为(153.2±32.8)nm,PdI为(0.185±0.031),Zeta电位为(-17.4±1.1)mV;依托泊苷固体脂质纳米粒可延缓药物释放,在24 h内药物累积释放52.4%;依托泊苷固体脂质纳米粒的抑瘤率显著高于依托泊苷注射液(P<0.05),说明依托泊苷固体脂质纳米粒能够显著抑制Lewis肺癌细胞在小鼠体内生长。结论:本研究通过热熔乳化 高压均质法制备的依托泊苷固体脂质纳米粒对Lewis肺癌细胞具有良好的抑瘤效果,可以作为依托泊苷的新型给药系统,对肺癌治疗具有一定的应用前景。  相似文献   

6.
目的制备荧光标记的脂质纳米粒,测定其理化性质,探讨脂质纳米载体通过小肠吸收的情况及影响吸收的因素。方法采用水性溶剂扩散法制备荧光标记脂质纳米粒,以微粒粒度及表面电位仪测定粒径和表面电位,荧光分光光度法测定包封率,以大鼠外翻肠模型考察不同肠段及脂质纳米粒处方因素对小肠吸收的影响。结果制备得到的荧光标记脂质纳米粒粒径约为150-300nm,带负电,荧光素嫁接物(ODA-FITC)包封率均高于95%,固体脂质纳米粒小肠不同部位吸收不一,十二指肠段吸收量最大,空肠次之,回肠最少。油酸和卵磷脂能够改善脂质纳米粒的小肠吸收。结论用水性溶剂扩散法易于制备高ODA-FITC包封率的脂质纳米粒,通过调整脂质纳米粒处方,可以得到理想的小肠吸收的脂质纳米载体。  相似文献   

7.
目的:制备吡喹酮-固体脂质纳米粒,考察其理化性质和体外释放度。方法:以硬脂酸为脂质材料,聚乙烯吡咯烷酮为乳化剂,利用热熔乳化超声法制备吡喹酮-固体脂质纳米粒,扫描电镜观察纳米粒形态和均匀度,纳米粒度仪测定其粒径、分散指数、Zeta电位、包封率和载药量,并进行体外释放试验。结果:制备的固体脂质纳米粒为类圆球状,粒径分布较均匀、表面光滑。纳米的平均粒径、分散指数、电位、包封率和载药量分别为(316.5±22.8)nm、0.23±0.05、(-25.3±0.7)mV,(92.64±5.12)%和(18.45±1.34)%。药物在制剂的过程中稳定性良好。体外释放表明吡喹酮-硬脂酸固体脂质纳米粒在生理盐水中具有一定程度的突释和显著的缓释效果。结论:本试验制备的吡喹酮-硬脂酸固体脂质纳米粒具有较好的均匀度和高载药量,并具有良好的缓释性能。  相似文献   

8.
目的:微乳法制备固体脂质纳米粒,以酮洛芬作为模型药物,考查其载药性能。方法:通过对空白微乳粒径和稳定性考查,确定优化处方,将其保温分散于冷水中制备固体脂质纳米粒。对影响其质量的工艺因素和处方因素进行考查和优化设计,筛选最优处方。结果:制备固体脂质纳米粒的直接影响因素包括脂质用量、药物的用量、冷水相温度和微乳保温温度等,所得固体脂质纳米粒的平均粒径(143.9±1.2)nm,多分散系数为0.443。载药固体脂质纳米粒包封率为81.47%,载药量为8.16%。结论:该法稳定可靠,可用于酮洛芬固体脂质纳米粒的制备。  相似文献   

9.
目的:以聚乙二醇单硬脂酸酯表面修饰材料结合到固体脂质纳米粒(solid lipid nanoparticles,SLN),以雷公藤内酯醇(triptolide,TPL)为模型药,制备一种具有良好亲水亲脂性的雷公藤内酯醇固体脂质纳米粒。方法:采用熔融-乳化法制备固体脂质纳米粒。通过单因素考察、中心复合设计(central composite design,CCD),考察脂质材料、聚山梨醇酯-80和PEG-stearate(PEG-SA)三个因素对TPL-SLN粒径、包封率和载药量的影响。通过透射电镜、热分析和X-射线衍射考察TPL-SLN的理化性质,并考察其固体脂质纳米粒的稳定性以及体外释放情况。用MTT法测定其对人正常肝L02细胞和肝癌细胞HepG2的增殖抑制作用并计算其IC50。结果:最优的处方:脂质材料为7.5%,聚山梨醇酯80(Tween 80)为2%和PEG-SA为2%,其粒径(193.43±6.07)nm,包封率(87.63±0.09)%,载药量(0.33±0.01)%。透射电镜观察所制备的纳米粒的形态近似于球形,DSC分析和X-射线衍射证实TPL以非晶型的形式存在于固体脂质纳米粒中。稳定性考察发现纳米粒粒径在一个月的贮存期基本没有变化(P>0.05),体外释放表明TPL-SLN具有体外缓释特性。TPL-SLN对肿瘤细胞的抑制作用强于正常肝细胞。结论:雷公藤内酯醇聚乙二醇修饰固体脂质纳米粒有望开发为临床口服用药新剂型。  相似文献   

10.
新型纳米脂质载体给药系统的研究进展   总被引:1,自引:1,他引:0  
<正>纳米脂质载体(nanostructured lipid carriers,NLC)是20世纪90年代末出现的一种新型给药系统[1]。纳米脂质载体是以具有生理相容性和生物可降解性的、高熔点的天然或合成固体脂质和液体脂质为骨架材料所制成的纳米尺度的载药系统,其特点在于在固体的脂质载体中引入了液体脂质,以期解决固态脂质纳米粒(SLN)载药量较低,有突释现象及纳米粒混悬体系的水分含量高的缺点[2]。  相似文献   

11.
大黄素固体脂质纳米粒的制备及理化性质研究   总被引:2,自引:0,他引:2  
张洪  成蓓 《中国药师》2010,13(3):326-329
目的:制备大黄素固体脂质纳米粒,并对其理化性质进行研究。方法:用乳化一溶剂挥发法制得大黄素素固体脂质纳米粒,并对其粒径、形态、表面电位、包封率、体外释药性质等进行研究。采用全体液平衡反向透析法研究体外释药性质。结果:所制固体脂质纳米粒外观形态圆整,粒度分布均匀,平均粒径为253nm,电位为一25.4mV,包封率为(56.31±2.06)%。药物体外释放符合Weibull线性方程。结论:固体脂质纳米粒可作为大黄素新型缓释给药系统。  相似文献   

12.
摘 要 目的:基于质量源于设计(QbD)理念设计和开发重楼总皂苷固体脂质纳米粒。方法: 根据重楼总皂苷固体脂质纳米粒剂型及给药特点确立了目标产品概况,并根据理论知识和实际经验,通过风险评估工具确定影响固体脂质纳米粒制剂学性质的关键性变量。首先应用Plackett Burman试验筛选出对重楼总皂苷固体脂质纳米粒制剂学性质影响显著的关键变量,然后对筛选出的变量应用Box-Behnken效应面法进一步优化。评价重楼总皂苷固体脂质纳米粒的粒径分布、多聚分散系数(PdI)、Zeta电位、微观形态等理化性质,考察固体脂质纳米粒体外释药情况。结果: 最佳处方和制备工艺为:单硬脂酸甘油酯浓度为5.5%,大豆磷脂浓度为8.0%,均质次数为6次,固定药物浓度为5.0%,表面活性剂种类为吐温80,均质压力为600 bar,均质温度为65 ℃。采用优化后处方工艺制得的重楼总皂苷固体脂质纳米粒平均粒径为(116.5±32.1)nm, PdI为0.198±0.018,Zeta电位为(-23.6.5±0.9)mV,透射电镜显示固体脂质纳米粒呈球状分布,体外释放结果表明具有缓释效果,24 h累积释药为63.5%。结论: 运用QbD理念设计和开发重楼总皂苷固体脂质纳米粒切实可行,能确保产品质量符合要求。  相似文献   

13.
肖志方 《中国药师》2015,(9):1512-1515
摘 要 目的: 制备美洛昔康固体脂质纳米粒,并考察其透皮吸收行为。方法: 采用热熔乳化超声 低温固化法制备美洛昔康固体脂质纳米粒,并考察其包封率、粒径分布、Zeta电位、微观形态及体外药物释放特性,采用Franz扩散池考察其透皮吸收行为。结果: 美洛昔康固体脂质纳米粒的包封率为(85.6±2.7)%,平均粒径为(213.5±52.6)nm,Zeta电位为(-32.2±3.9)mV,透射电镜显示美洛昔康固体脂质纳米粒粒径均一,成球状分布。其12 h药物累积透皮量显著高于美洛昔康溶液。结论: 美洛昔康固体脂质纳米粒可以显著提高药物累积透皮量,有望成为美洛昔康的新型局部给药制剂。  相似文献   

14.
纳米结构脂质载药系统的研究进展   总被引:1,自引:0,他引:1  
陈晶  顾月清 《药学进展》2010,34(12):535-541
纳米结构脂质载体是在第一代脂质纳米粒——固体脂质纳米粒的基础上发展起来的一种新型药物传递系统,相比于传统脂质纳米粒,具有安全性好、稳定性高等优势,故而引起国内外医药工作者的广泛关注。对纳米结构脂质载体的特点、性质、结构、制备工艺及其用作载药系统的研究情况进行概述,为其在医药领域中的深度开发提供参考。  相似文献   

15.
目的:建立适用于生产的单唾液酸四己糖神经节苷脂(GM1)固体脂质纳米粒的制备方法。方法:分别采用溶剂乳化法和高压乳匀法制备GM1固体脂质纳米粒,并将制备结果进行比较。结果:通过比较两种制备方法制得的GM1固体脂质纳米粒进行外观及稳定性、形态学考查、包封率等指标,同时比较以该固体脂质纳米粒制备的冻干粉针剂性状,发现高压乳匀法获得的固体脂质纳米粒性质较佳。结论:高压乳匀法可作为实际GM1固体脂质纳米粒冻干粉针剂中间体的制备方法。  相似文献   

16.
目的:对氟尿苷二醋酸酯固体脂质纳米粒的制备工艺和含量测定方法进行研究,并对其质量进行评价。方法:采用薄膜超声分散法制备氟尿苷二醋酸酯固体脂质纳米粒,并对其包封率、形态等性质进行研究。结果:制得氟尿苷二醋酸酯固体脂质纳米粒形态均匀圆整、粒径范围为(215.3&#177;83.1)nm,包封率为98.27%,裁药量为8.20%。结论:选择薄膜超声分散法制备氟尿苷二醋酸酯固体脂质纳米粒方法可行,为开发氟尿苷新型注射制剂提供了实验依据。  相似文献   

17.
陆彬 《中国药师》2003,6(8):468-470
2 .1.5 固体脂质纳米粒的制备固体脂质纳米粒 (solidlipidnanoparticles ,SLN)系指以生理相容的高熔点脂质为骨架材料制成药物分散在骨架材料中的纳米粒。由于骨架材料在室温是固体 ,故称SLN。它既具有聚合物纳米粒的物理稳定性高、药物泄漏少、缓释性好的特点 ,又兼有脂质体毒性低、易于大规模生产的优点 ,因此是极有发展前途的新型给药系统的载体。常用的高熔点脂质有饱和脂肪酸甘油酯、硬脂酸、混合脂质等。下面介绍目前常用的制备方法。2 .1.5 .1 熔融匀化法 熔融匀化法 (melthomoge nization)是制备SLN的经典方法 ,即将熔融的高…  相似文献   

18.
褪黑素固体脂质纳米粒的制备及理化性质   总被引:2,自引:0,他引:2  
考察不同的处方对褪黑素固体脂质纳米粒粒径和包封率等理化性质的影响,并进行其体外释放实验。结果表明,以单硬脂酸甘油酯为脂质材料,乳化超声法制备固体脂质纳米粒,平均粒径为(62.4±1.5)nm,ζ电位为(-7.0±0.2)mV,平均包封率为(64.6±3.8)%;药物的体外释放符合Weibull模型。  相似文献   

19.
目的:制备延胡索乙素固体脂质纳米粒缓释片,并研究延胡索乙素固体脂质纳米粒缓释片的释药模型和释药机理。方法:乳化-溶剂挥发法制备延胡索乙素固体脂质纳米粒,以乳糖作为冻干剂,羟丙基甲基纤维素(HPMC)为缓释材料进一步制备缓释片。在单因素考察的基础上,设计正交试验优化延胡索乙素固体脂质纳米粒缓释片处方,并对缓释片体外释药模型和释药机理进行探讨。结果:延胡索乙素固体脂质纳米粒缓释片最佳处方为缓释材料HPMC K4M和HPMC K15M比例为1:1,用量为40 mg,PEG 4000的用量为20 mg,硬脂酸镁用量为片芯质量的0.5%。延胡索乙素固体脂质纳米粒缓释片最佳处方的体外释放行为符合Higuchi释药模型,释药方程为:Mt/M=0.286 8 t1/2-0.073 8(r=0.990 8),12 h内累积释放度为93.56%,缓释片释药机理为扩散和溶蚀共存。结论:制备的延胡索乙素固体脂质纳米粒缓释片,工艺重复性较好,其释药行为符合Higuchi释药模型。  相似文献   

20.
新型纳米粒给药系统——纳米结构的脂质载体   总被引:1,自引:1,他引:1  
固体脂质纳米粒(SLN)已被公认是一种新型的纳米粒给药系统,但SLN有不同程度的潜在问题。作为新一代的纳米粒给药系统——纳米结构的脂质载体(Nanostructured lipid carriers,NLC)可减小或者避免SLN有限载药能力及储藏过程包封药物泄漏的问题,而且能调整SLN的释放曲线。NLC以固体脂质与物态上相异的液体脂质混合制备得到,形成3种类型特殊结构的脂质骨架:结晶不完全态、无定形态、复合态。现介绍一种特殊的制备方法,不仅适合于制备NLC,而且也可作为制备高粒子浓度(30%~95%)SLN分散液的方法。描述了NLC作为给药系统潜在的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号