首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
OBJECTIVE: Abnormal activation of the dorsolateral prefrontal cortex and a related cortical network during working memory tasks has been demonstrated in patients with schizophrenia, but the responsible mechanism has not been identified. The present study was performed to determine whether neuronal pathology of the dorsolateral prefrontal cortex is linked to the activation of the working memory cortical network in patients with schizophrenia. METHOD: The brains of 13 patients with schizophrenia and 13 comparison subjects were studied with proton magnetic resonance spectroscopic ((1)H-MRS) imaging (to measure N-acetylaspartate as a marker of neuronal pathology) and with [(15)O]water positron emission tomography (PET) during performance of the Wisconsin Card Sorting Test (to measure activation of the working memory cortical network). An independent cohort of patients (N=7) was also studied in a post hoc experiment with (1)H-MRS imaging and with the same PET technique during performance of another working memory task (the "N-back" task). RESULTS: Measures of N-acetylaspartate in the dorsolateral prefrontal cortex strongly correlated with activation of the distributed working memory network, including the dorsolateral prefrontal, temporal, and inferior parietal cortices, during both working memory tasks in the two independent groups of patients with schizophrenia. In contrast, N-acetylaspartate in other cortical regions and in comparison subjects did not show these relationships. CONCLUSIONS: These findings directly implicate a population of dorsolateral prefrontal cortex neurons as selectively accounting for the activity of the distributed working memory cortical network in schizophrenia and complement other evidence that dorsolateral prefrontal cortex connectivity is fundamental to the pathophysiology of the disorder.  相似文献   

2.
OBJECTIVE: The dorsolateral prefrontal cortex has been implicated in both working memory and the pathophysiology of schizophrenia. A relationship among dorsolateral prefrontal cortex activity, working memory dysfunction, and symptoms in schizophrenia has not been firmly established, partly because of generalized cognitive impairments in patients and task complexity. Using tasks that parametrically manipulated working memory load, the authors tested three hypotheses: 1) patients with schizophrenia differ in prefrontal activity only when behavioral performance differentiates them from healthy comparison subjects, 2) dorsolateral prefrontal cortex dysfunction is associated with poorer task performance, and 3) dorsolateral prefrontal cortex dysfunction is associated with cognitive disorganization but not negative or positive symptoms. METHOD: Seventeen conventionally medicated patients with schizophrenia and 16 healthy comparison subjects underwent functional magnetic resonance imaging while performing multiple levels of the "n-back" sequential-letter working memory task. RESULTS: Patients with schizophrenia showed a deficit in physiological activation of the right dorsolateral prefrontal cortex (Brodmann's area 46/9) in the context of normal task-dependent activity in other regions, but only under the condition that distinguished them from comparison subjects on task performance. Patients with greater dorsolateral prefrontal cortex dysfunction performed more poorly. Dorsolateral prefrontal cortex dysfunction was selectively associated with disorganization symptoms. CONCLUSIONS: These results are consistent with the hypotheses that working memory dysfunction in patients with schizophrenia is caused by a disturbance of the dorsolateral prefrontal cortex and that this disturbance is selectively associated with cognitive disorganization. Further, the pattern of behavioral performance suggests that dorsolateral prefrontal cortex dysfunction does not reflect a deficit in the maintenance of stimulus representations per se but points to deficits in more associative components of working memory.  相似文献   

3.
OBJECTIVE: The authors used proton magnetic resonance spectroscopic imaging ((1)H-MRSI) to assess potential reductions of N-acetylaspartate (a marker of neuronal integrity) in the hippocampal area and dorsolateral prefrontal cortex of patients with schizophreniform disorder. In addition, they assessed the relationship between N-acetylaspartate levels and working memory deficits. METHOD: Twenty-four patients with DSM-IV schizophreniform disorder and 24 healthy subjects were studied. Subjects underwent (1)H-MRSI and were given the N-back working memory test. RESULTS: The schizophreniform disorder patients had selective reductions of N-acetylaspartate ratios in the hippocampal area and the dorsolateral prefrontal cortex, and a positive correlation was seen between N-acetylaspartate ratios in the dorsolateral prefrontal cortex and performance during the 2-back working memory condition. CONCLUSIONS: Similar to findings reported in schizophrenia studies, N-acetylaspartate reductions in the hippocampal area and the dorsolateral prefrontal cortex were seen in patients with schizophreniform disorder. Moreover, the results support other evidence that neuronal pathology in the dorsolateral prefrontal cortex accounts for a proportion of working memory deficits already present at illness outset.  相似文献   

4.
OBJECTIVE: It has been suggested that in healthy persons higher-order cognitive processing engaged by incremental working memory load hierarchically employs more dorsal than ventral prefrontal resources in healthy individuals. Given that working memory performance is impaired in schizophrenia, especially at higher executive loads, the authors investigated how this prefrontal functional organization might be altered in disease, independent of performance deficits. METHOD: Using N-back working memory functional magnetic resonance imaging (fMRI) data, the authors studied 15 patients with schizophrenia and 26 healthy comparison subjects. Subgroups based on median performance accuracy at 2-back were analyzed; high performers included eight schizophrenia patients and 14 comparison subjects, and low performers included seven patients and 12 comparison subjects. RESULTS: High-performing but not low-performing comparison subjects responded to incremental working memory executive load with disproportionately greater dorsal but not ventral prefrontal cortex activation, which also predicted performance accuracy. In the high- and low-performing patient groups, incremental working memory load caused a disproportionate increase in ventral but not dorsal prefrontal cortex activation relative to the respective comparison group, which also correlated with accuracy. Functional connectivity between the ventral prefrontal cortex and posterior parietal cortex was relatively greater in patients, whereas comparison subjects had greater functional connectivity between the dorsal prefrontal cortex and posterior parietal cortex. CONCLUSIONS: The hierarchical organization of the prefrontal cortex may be compromised in schizophrenia, resulting in loss of functional specialization and integration at the dorsal prefrontal cortex and in compensatory activation from the ventral prefrontal cortex, which may ultimately affect working memory and executive cognition.  相似文献   

5.
OBJECTIVE: Working memory, a critical cognitive capacity that is affected in schizophrenia, can be divided into maintenance and manipulation processes. Previous behavioral research suggested that manipulation is more affected than maintenance in patients with chronic schizophrenia. In this study of first-episode schizophrenia patients, the authors evaluated the extent to which the two working memory processes are affected early in the course of schizophrenia. METHOD: Study subjects were 11 first-episode schizophrenia patients and 11 matched healthy comparison subjects. Each group performed two verbal working memory tasks while undergoing functional magnetic resonance imaging. One task required maintenance of information; the other required manipulation of information in addition to maintenance. RESULTS: Under behaviorally matched conditions, both groups activated a predominantly left-sided frontal-parietal network. The manipulation plus maintenance task elicited activation of greater magnitude and spatial extent. With both tasks, patients showed less bilateral dorsolateral prefrontal cortex activation and greater ventrolateral prefrontal cortex activation, relative to the comparison subjects. A group-by-task interaction was observed for activation at the left dorsolateral and ventrolateral prefrontal cortex. The increase in activation when patients engaged in the manipulation plus maintenance task was disproportionately less in the dorsolateral prefrontal cortex and greater in the ventrolateral prefrontal cortex. CONCLUSIONS: These functional neuroanatomical findings add support to earlier suggestions that manipulation of information is selectively more affected than maintenance of information in persons with schizophrenia. They also suggest the presence of interacting regions of dysfunctional and compensatory prefrontal responses in the dorsolateral and ventrolateral prefrontal cortex, respectively, that are more prominent when information is manipulated. This disrupted prefrontal network is present relatively early in the course of schizophrenia.  相似文献   

6.
OBJECTIVE: The identification of neurobiological intermediate phenotypes may hasten the search for susceptibility genes in complex psychiatric disorders such as schizophrenia. Earlier family studies have suggested that deficits in executive cognition and working memory may be related to genetic susceptibility for schizophrenia, but the biological basis for this behavioral phenotype has not been identified. METHOD: The authors used functional magnetic resonance imaging (fMRI) during performance of the N-back working memory task to assess working memory-related cortical physiology in nonschizophrenic, cognitively intact siblings of patients with schizophrenia. They compared 23 unaffected siblings of schizophrenic patients to 18 matched comparison subjects. As a planned replication, they studied another 25 unaffected siblings and 15 comparison subjects. RESULTS: In both cohorts, there were no group differences in working memory performance. Nevertheless, both groups of siblings showed an exaggerated physiological response in the right dorsolateral prefrontal cortex that was qualitatively similar to results of earlier fMRI studies of patients with schizophrenia. CONCLUSIONS: These fMRI data provide direct evidence of a primary physiological abnormality in dorsolateral prefrontal cortex function in individuals at greater genetic risk for schizophrenia, even in the absence of a manifest cognitive abnormality. This exaggerated fMRI response implicates inefficient processing of memory information at the level of intrinsic prefrontal circuitry, similar to earlier findings in patients with schizophrenia. These data predict that inheritance of alleles that contribute to inefficient prefrontal information processing will increase risk for schizophrenia.  相似文献   

7.
BACKGROUND: A large number of studies suggest the presence of deficits in dorsolateral prefrontal cortex function during performance of working memory tasks in individuals with schizophrenia. However, working memory deficits may also present in other psychiatric disorders, such as major depression. It is not clear whether people with major depression also demonstrate impaired prefrontal activation during performance of working memory tasks. METHODS: We used functional magnetic resonance imaging to assess the patterns of cortical activation associated with the performance of a 2-back version of the N-Back task (working memory) in 38 individuals with schizophrenia and 14 with major depression. RESULTS: We found significant group differences in the activation of dorsolateral prefrontal cortex associated with working memory performance. Consistent with prior research, participants with schizophrenia failed to show activation of right dorsolateral prefrontal cortex in response to working memory tasks demands, whereas those with major depression showed clear activation of right and left dorsolateral prefrontal cortex as well as bilateral activation of inferior and superior frontal cortex. CONCLUSIONS: During performance of working memory tasks, deficits in prefrontal activation, including dorsolateral regions, are more severe in participants with schizophrenia (most of whom were recently released outpatients) than in unmedicated outpatients with acute nonpsychotic major depression.  相似文献   

8.
Studies of high-risk offspring (HR) of schizophrenic patients have found abnormalities in attention, working memory and executive functions, suggesting impaired integrity of the prefrontal cortex and related brain regions. The authors conducted a preliminary high-field (3 T) functional magnetic resonance imaging (fMRI) study to assess performance and activation during a memory-guided saccade (MGS) task, which measures spatial working memory. HR subjects showed significant decreases in fMRI-measured activation in the dorsolateral prefrontal cortex (Brodmann's areas 8 and 9/46) and the inferior parietal cortex (Brodmann's area 40) compared to age- and sex-matched healthy controls (HC). Abnormal functional integrity of prefrontal and parietal regions of the heteromodal association cortical (HAC) regions in subjects at genetic risk for schizophrenia is consistent with findings observed in adults with the illness [Callicott et al., Cereb. Cortex 10 (2000) 1078; Manoach et al., Biol. Psychiatry 48 (2000) 99.]. These abnormalities need to be prospectively investigated in nonpsychotic individuals at risk for schizophrenia in order to determine their predictive value for eventual emergence of schizophrenia or related disorders.  相似文献   

9.
OBJECTIVE: To test the hypothesis that deficits in spatial working memory in autism are due to abnormalities in prefrontal circuitry. METHODS: Functional MRI (fMRI) at 3 T was performed in 11 rigorously diagnosed non-mentally retarded autistic and six healthy volunteers while they performed an oculomotor spatial working memory task and a visually guided saccade task. RESULTS: Autistic subjects demonstrated significantly less task-related activation in dorsolateral prefrontal cortex (Brodmann area [BA] 9/46) and posterior cingulate cortex (BA 23) in comparison with healthy subjects during a spatial working memory task. In contrast, activation of autistic individuals was not reduced in other regions comprising the neural circuitry for spatial working memory including the cortical eye fields, anterior cingulate cortex, insula, basal ganglia, thalamus, and lateral cerebellum. Autistic subjects also did not demonstrate reduced activation in any brain regions while performing visually guided saccades. CONCLUSION: Impairments in executive cognitive processes in autism may be subserved by abnormalities in neocortical circuitry as evidenced by decreased activation in prefrontal and posterior cingulate circuitry during a spatial working memory task.  相似文献   

10.
OBJECTIVE: Neuropsychological studies have demonstrated verbal episodic memory deficits in schizophrenia during word encoding and retrieval. This study examined neural substrates of memory in an analysis that controlled for successful retrieval. METHOD: Event-related blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) was used to measure brain activation during word encoding and recognition in 14 patients with schizophrenia and 15 healthy comparison subjects. An unbiased multiple linear regression procedure was used to model the BOLD response, and task effects were detected by contrasting the signal before and after stimulus onset. RESULTS: Patients attended during encoding and had unimpaired reaction times and normal response biases during recognition, but they had lower recognition discriminability scores, compared with the healthy subjects. Analysis of contrasts was restricted to correct items. Previous findings of a deficit in bilateral prefrontal cortex activation during encoding in patients were reproduced, but patients showed greater parahippocampal activation rather than deficits in temporal lobe activation. During recognition, left dorsolateral prefrontal cortex activation was lower in the patients and right anterior prefrontal cortex activation was preserved, as in the authors' previous study using positron emission tomography. Successful retrieval was associated with greater right dorsolateral prefrontal cortex activation in the comparison subjects, whereas orbitofrontal, superior frontal, mesial temporal, middle temporal, and inferior parietal regions were more active in the patients during successful retrieval. CONCLUSIONS: The pattern of prefrontal cortex underactivation and parahippocampal overactivation in the patients suggests that functional connectivity of dorsolateral prefrontal and temporal-limbic structures is disrupted by schizophrenia. This disruption may be reflected in the memory strategies of patients with schizophrenia, which include reliance on rote rehearsal rather than associative semantic processing.  相似文献   

11.
CONTEXT: It remains unclear whether altered regional brain physiological activity in patients with schizophrenia during working memory tasks relates to maintenance-related processes, manipulation-related (ie, executive) processes, or both. OBJECTIVE: To examine regional functional activations of the brain during maintenance- and manipulation-related working memory processing in patients with schizophrenia and in healthy comparison subjects. DESIGN: Functional images of the brain were acquired in 11 schizophrenic patients and 12 healthy control subjects (matched for age, sex, handedness, and parental education) during 2 spatial working memory paradigms, one contrasting maintenance-only processing with maintenance and manipulation processing and the other contrasting parametrically varying maintenance demands. RESULTS: Patients and controls showed activation of a large, spatially distributed network of cortical and subcortical regions during spatial working memory processing. When task demands required explicit manipulation of information held in memory, controls recruited right dorsolateral prefrontal cortex (Brodmann areas 45 and 46) to a significantly greater extent than patients. A similar effect was observed for the larger memory set sizes of the memory set size task. No other brain regions showed activation differences between groups for either task. These differences persisted when comparing activation maps for memory set sizes in which the 2 groups were equivalent in behavioral accuracy and when comparing subgroups of patients and controls matched for behavioral accuracy on either task. CONCLUSIONS: Physiological disturbances in the dorsolateral prefrontal cortex contribute differentially to patients' difficulties with maintaining spatial information across a brief delay, as well as with manipulating the maintained representation. These differences persisted when comparing conditions in which the 2 groups were equivalent in behavioral accuracy.  相似文献   

12.
Functional neuroimaging studies on cognitive dysfunction in schizophrenia have suggested regional brain activation changes in the dorsolateral prefrontal cortex and the medial temporal lobe. However, less is known about the functional coupling of these areas during cognitive performance. In this study, we used functional magnetic resonance imaging, a verbal working memory (WM) task and multivariate statistical techniques to investigate the functional coupling of temporally anticorrelated neural networks during cognitive processing in patients with schizophrenia (n = 16) compared to healthy controls (n = 16). Independent component analysis identified 18 independent components (ICs) among which two ICs were selected for further analyses. These ICs included temporally anticorrelated networks which were most highly associated with the delay period of the task in both healthy controls and patients with schizophrenia. Functional network abnormalities in patients with schizophrenia were detected within a “task-positive” lateral frontoparietal network, where increased functional connectivity was found in bilateral dorsolateral prefrontal regions. In addition, aberrant functional coupling of the hippocampal cortex in patients with schizophrenia was detected within a “task-negative” medial frontotemporal network. In patients with schizophrenia, functional connectivity indices in the left dorsolateral prefrontal cortex and the right hippocampal cortex were positively correlated with accuracy during the WM task, while the connectivity strength in the right dorsolateral prefrontal cortex was negatively correlated with measures of symptom severity. These data suggest that within two temporally anticorrelated network states, patients with schizophrenia exhibit increased and persistent dorsolateral prefrontal and hippocampal connectivity during WM performance.  相似文献   

13.
Working memory capacity in schizophrenia: a parametric fMRI study   总被引:9,自引:0,他引:9  
Impaired working memory (WM) function in schizophrenia has been associated with abnormal activation of the dorsolateral prefrontal cortex (DLPFC). It is, however, not clear whether abnormal activation is a sign of DLPFC pathology, or a correlate of poor performance. We address this question by examining activity in the WM brain system at different levels of task difficulty. A parametric fMRI paradigm is used to examine how the WM system responds to increasing load. A parametric fMRI design with four levels of a spatial N-back task was used to examine the relationships between working memory load, functional output (performance) and brain activity in 10 schizophrenic patients on atypical antipsychotic medication and to compare these to 10 healthy controls. In spite of increasingly poor performance in schizophrenic patients, activity increased normally in DLPFC and inferior parietal cortex bilaterally and in anterior cingulate, with increasing load. At 3-back, activity dropped in DLPFC in comparison with controls, but not in the other regions. The results indicate that peak activation of the WM-system is reached at a lower processing load in schizophrenic patients than in healthy controls. As a decline of DLPFC activity at high processing loads in itself is not abnormal, WM dysfunction in schizophrenia appears to be the result of an impaired functional output of the whole WM system, causing elevation of the effective burden imposed by WM tasks.  相似文献   

14.
Schizophrenia patients show eye movement abnormalities that suggest dysfunction in neocortical control of the oculomotor system. Fifteen never-medicated, first episode schizophrenia patients and 24 matched healthy individuals performed eye movement tasks during functional magnetic resonance imaging studies. For both visually guided saccade and smooth pursuit paradigms, schizophrenia patients demonstrated reduced activation in sensorimotor areas supporting eye movement control, including the frontal eye fields, supplementary eye fields, and parietal and cingulate cortex. The same findings were observed for an oculomotor delayed response paradigm used to assess spatial working memory, during which schizophrenia patients also had reduced activity in dorsolateral prefrontal cortex. In contrast, only minimal group differences in activation were found during a manual motor task. These results suggest a system-level dysfunction of cortical sensorimotor regions supporting oculomotor function, as well as in areas of dorsolateral prefrontal cortex that support spatial working memory. These findings indicate that a generalized rather than localized pattern of neocortical dysfunction is present early in the course of schizophrenia and is related to deficits in the sensorimotor and cognitive control of eye movement activity.  相似文献   

15.
Although there is considerable evidence that patients with schizophrenia fail to activate the dorsolateral prefrontal cortex (DLPFC) to the degree seen in normal comparison subjects when performing working memory or executive tasks, hypofrontality may be coupled with relatively increased activity in other brain regions. However, most imaging studies of working memory in schizophrenia have focused on DLPFC activity. The goal of this work is to review functional neuroimaging studies that contrasted patients with schizophrenia and healthy comparison subjects during a prototypical working memory task, the n-back paradigm, to highlight areas of hyper- and hypoactivation in schizophrenia. We utilize a quantitative meta-analysis method to review 12 imaging studies where patients with schizophrenia were contrasted with healthy comparison subjects while performing the n-back paradigm. Although we find clear support for hypofrontality, we also document consistently increased activation in anterior cingulate and left frontal pole regions in patients with schizophrenia compared to that in controls. These data suggest that whereas reduced DLPFC activation is reported consistently in patients with schizophrenia relative to healthy subjects, abnormal activation patterns are not restricted to this region, raising questions as to whether the pathophysiological dysfunction in schizophrenia is specific to the DLPFC and about the relationship between impaired performance and aberrant activation patterns. The complex pattern of hyper- and hypoactivation consistently found across studies implies that rather than focusing on DLPFC dysregulation, researchers should consider the entire network of regions involved in a given task when making inferences about the biological mechanisms of schizophrenia.  相似文献   

16.
BACKGROUND: Two brain regions often implicated in schizophrenia are the dorsolateral prefrontal cortex (DLPFC) and the hippocampal formation (HF). It has been hypothesized that the pathophysiology of the disorder might involve an alteration of functional interactions between medial temporal and prefrontal areas. METHODS: We used neuroimaging data acquired during a working memory challenge and a sensorimotor control task in 22 medication-free schizophrenic patients and 22 performance-, age-, and sex-matched healthy subjects to investigate "functional connectivity" between HF and DLPFC in schizophrenia. The HF blood flow, measured with positron emission tomography, was assessed within a probabilistic template. Brain areas whose activity was positively or negatively coupled to HF were identified using voxelwise analysis of covariance throughout the entire brain and analyzed using a random effects model. RESULTS: During working memory, patients showed reduced activation of the right DLPFC and left cerebellum. In both groups, inverse correlations were observed between the HF and the contralateral DLPFC and inferior parietal lobule. While these did not differ between diagnostic groups during the control task, the working memory challenge revealed a specific abnormality in DLPFC-HF functional connectivity-while the right DLPFC was significantly coupled to the left HF in both groups during the control task, this correlation was not seen in healthy subjects during working memory but persisted undiminished in patients, resulting in a significant task-by-group interaction. CONCLUSIONS: Our results suggest a regionally specific alteration of HF-DLPFC functional connectivity in schizophrenia that manifests as an unmodulated persistence of an HF-DLPFC linkage during working memory activation. Thus, a mechanism by which HF dysfunction may manifest in schizophrenia is by inappropriate reciprocal modulatory interaction with the DLPFC.  相似文献   

17.
OBJECTIVE: Verbal memory deficits are among the most severe cognitive deficits observed in patients with schizophrenia. This study examined patterns of brain activity during episodic encoding and recognition of words in patients with schizophrenia. METHOD: Functional magnetic resonance imaging (fMRI) was used to study regional brain activation in 10 healthy male comparison subjects and 10 male outpatients with schizophrenia during performance of a modified version of the words subtest of Warrington's Recognition Memory Test. RESULTS: Despite having intact performance in word recognition, the patients with schizophrenia had less activation of the right dorsolateral and anterior prefrontal cortex, right anterior cingulate, and left lateral temporal cortex during word encoding, compared with the healthy comparison subjects. During word recognition, the patients had impairments in activation of the bilateral dorsolateral prefrontal and lateral temporal cortices. CONCLUSIONS: Schizophrenia was associated with attenuated frontotemporal activation during episodic encoding and recognition of words. These results from an fMRI study replicate earlier findings derived from a positron emission tomography study.  相似文献   

18.
Functional magnetic resonance imaging was used to compare cortical activation patterns in healthy volunteers with those in patients with schizophrenia during a modified verbal Stroop task. Healthy subjects (n=13) and patients with schizophrenia (n=13) on stable antipsychotic treatment, matched on demographic variables, were included. Patients were preselected on the basis of good performance on a selective attention test. Patients with schizophrenia showed a significantly increased pattern of activation in the left and right inferior frontal cortex and the anterior cingulate cortex. A significant negative correlation between activation of the left prefrontal cortex and accuracy in the modified Stroop test was observed for healthy controls but not schizophrenia patients. Although both groups recruited the prefrontal cortex during the modified Stroop task, for the schizophrenia patients this activation was bilateral, whereas for the controls this activation was primarily in the left hemisphere, suggesting that patients with schizophrenia recruited more prefrontal regions to perform the task with the same accuracy as healthy controls. Our findings of increased activity across multiple areas of the brain, including dorsolateral frontal cortex and anterior cingulate, in patients with schizophrenia who perform relatively well on a task of selective attention give further evidence that task performance may be a confounding factor in the interpretation of neuroimaging results.  相似文献   

19.
Background: Prominent regional cortical thickness reductions have been shown in schizophrenia. In contrast, little is known regarding alterations of structural coupling between regions in schizophrenia and how these alterations may be related to cognitive impairments in this disorder. Methods: T1-weighted magnetic resonance images were acquired in 54 patients with schizophrenia and 68 healthy control subjects aged 18–55 years. Cortical thickness was compared between groups using a vertex-wise approach. To assess structural coupling, seeds were selected within regions of reduced thickness, and brain-wide cortical thickness correlations were compared between groups. The relationships between identified patterns of circuit structure disruption and cognitive task performance were then explored. Results: Prominent cortical thickness reductions were found in patients compared with controls at a 5% false discovery rate in a predominantly frontal and temporal pattern. Correlations of the left dorsolateral prefrontal cortex (DLPFC) with right prefrontal regions were significantly different in patients and controls. The difference remained significant in a subset of 20 first-episode patients. Participants with stronger frontal interhemispheric thickness correlations had poorer working memory performance. Conclusions: We identified structural impairment in a left-right DLPFC circuit in patients with schizophrenia independent of illness stage or medication exposure. The relationship between left-right DLPFC thickness correlations and working memory performance implicates prefrontal interhemispheric circuit impairment as a vulnerability pathway for poor working memory performance. Our findings could guide the development of novel therapeutic interventions aimed at improving working memory performance in patients with schizophrenia.Key words: dorsolateral prefrontal cortex, MRI, cortical thickness, structural coupling  相似文献   

20.
A goal of this study was to evaluate the function of the anterior cingulate cortex (ACC) and of the dorsolateral prefrontal cortex (DLPFC) in medicated patients with schizophrenia (SZ), a small group of first-degree relatives, and healthy controls using a visual delayed match-to-sample task in conjunction with functional magnetic resonance imaging (fMRI). To mitigate performance differences between SZ and healthy controls, we used a novel task that allows for individualized adjustment of task difficulty to match ability level. We also trained participants on the task prior to scanning. Using an event-related design, we modeled three components of the match-to-sample trial: visual encoding, delay, and discrimination. We did not find significant differences in ACC/medial frontal cortex activation between the groups. However, compared to healthy controls, SZ showed decreased activation in visual processing areas during the encoding and discrimination phases of the task and in the ventrolateral prefrontal cortex during the delay. These findings emphasize the tendency of schizophrenia subjects to solve perceptual memory problems by engaging diverse regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号