首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
OBJECTIVE: Neuropsychological studies have demonstrated verbal episodic memory deficits in schizophrenia during word encoding and retrieval. This study examined neural substrates of memory in an analysis that controlled for successful retrieval. METHOD: Event-related blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) was used to measure brain activation during word encoding and recognition in 14 patients with schizophrenia and 15 healthy comparison subjects. An unbiased multiple linear regression procedure was used to model the BOLD response, and task effects were detected by contrasting the signal before and after stimulus onset. RESULTS: Patients attended during encoding and had unimpaired reaction times and normal response biases during recognition, but they had lower recognition discriminability scores, compared with the healthy subjects. Analysis of contrasts was restricted to correct items. Previous findings of a deficit in bilateral prefrontal cortex activation during encoding in patients were reproduced, but patients showed greater parahippocampal activation rather than deficits in temporal lobe activation. During recognition, left dorsolateral prefrontal cortex activation was lower in the patients and right anterior prefrontal cortex activation was preserved, as in the authors' previous study using positron emission tomography. Successful retrieval was associated with greater right dorsolateral prefrontal cortex activation in the comparison subjects, whereas orbitofrontal, superior frontal, mesial temporal, middle temporal, and inferior parietal regions were more active in the patients during successful retrieval. CONCLUSIONS: The pattern of prefrontal cortex underactivation and parahippocampal overactivation in the patients suggests that functional connectivity of dorsolateral prefrontal and temporal-limbic structures is disrupted by schizophrenia. This disruption may be reflected in the memory strategies of patients with schizophrenia, which include reliance on rote rehearsal rather than associative semantic processing.  相似文献   

2.
OBJECTIVE: Memory impairment has been well documented in schizophrenia. In a previous study, the authors investigated patterns of brain activity during episodic encoding and recognition of words in remitted, stable schizophrenia outpatients being treated with novel antipsychotics. The same procedure was used in this study to investigate unmedicated patients during an acute episode of schizophrenia. METHOD: Functional magnetic resonance imaging was used to study regional brain activation in 10 unmedicated patients experiencing an acute episode of schizophrenia and 10 healthy comparison subjects during performance of a modified version of the words subtest of Warrington's Recognition Memory Test. RESULTS: Despite intact recognition performance, patients with schizophrenia showed reduced activation of anterior prefrontal, posterior cingulate, and retrosplenial areas relative to comparison subjects during word encoding. During word recognition, reduced activation was found in the patients' dorsolateral prefrontal and limbic/paralimbic regions. On the other hand, higher metabolism in bilateral anterior prefrontal cortices was observed. CONCLUSIONS: The results suggest that different neural pathways are engaged during episodic encoding and recognition of words in patients experiencing an acute episode of schizophrenia relative to healthy comparison subjects. Furthermore, acute psychosis may prevent practice effects, reflected in a failure to engage brain regions associated with successful episodic memory retrieval in healthy subjects.  相似文献   

3.
OBJECTIVE: Neuropsychological studies have shown that deficits in verbal episodic memory in schizophrenia occur primarily during encoding and retrieval stages of information processing. The current study used positron emission tomography to examine the effect of schizophrenia on change in cerebral blood flow (CBF) during these memory stages. METHOD: CBF was measured in 23 healthy comparison subjects and 23 patients with schizophrenia during four conditions: resting baseline, motor baseline, word encoding, and word recognition. The motor baseline was used as a reference that was subtracted from encoding and recognition conditions by using statistical parametric mapping. RESULTS: Patients' performance was similar to that of healthy comparison subjects. During word encoding, patients showed reduced activation of left prefrontal and superior temporal regions. Reduced left prefrontal activation in patients was also seen during word recognition, and additional differences were found in the left anterior cingulate, left mesial temporal lobe, and right thalamus. Although patients' performance was similar to that of healthy comparison subjects, left inferior prefrontal activation was associated with better performance only in the comparison subjects. CONCLUSIONS: Left frontotemporal activation during episodic encoding and retrieval, which is associated with better recognition in healthy people, is disrupted in schizophrenia despite relatively intact recognition performance and right prefrontal function. This may reflect impaired strategic use of semantic information to organize encoding and facilitate retrieval.  相似文献   

4.
OBJECTIVE: Patients with schizophrenia improve episodic memory accuracy when given organizational strategies through levels-of-processing paradigms. This study tested if improvement is accompanied by normalized frontotemporal function. METHOD: Event-related blood-oxygen-level-dependent functional magnetic resonance imaging (fMRI) was used to measure activation during shallow (perceptual) and deep (semantic) word encoding and recognition in 14 patients with schizophrenia and 14 healthy comparison subjects. RESULTS: Despite slower and less accurate overall word classification, the patients showed normal levels-of-processing effects, with faster and more accurate recognition of deeply processed words. These effects were accompanied by left ventrolateral prefrontal activation during encoding in both groups, although the thalamus, hippocampus, and lingual gyrus were overactivated in the patients. During word recognition, the patients showed overactivation in the left frontal pole and had a less robust right prefrontal response. CONCLUSIONS: Evidence of normal levels-of-processing effects and left prefrontal activation suggests that patients with schizophrenia can form and maintain semantic representations when they are provided with organizational cues and can improve their word encoding and retrieval. Areas of overactivation suggest residual inefficiencies. Nevertheless, the effect of teaching organizational strategies on episodic memory and brain function is a worthwhile topic for future interventional studies.  相似文献   

5.
BACKGROUND: Many patients with schizophrenia demonstrate memory deficits. We studied patterns of brain activity during episodic recognition of new and previously seen three-dimensional objects. METHODS: We used (15)O positron emission tomography to study regional cerebral blood flow in eight normal subjects and nine patients with schizophrenia during a visual object recognition task. RESULTS: In comparison with control subjects, patients with schizophrenia showed less regional cerebral blood flow increases in the pulvinar region of the right thalamus and the right prefrontal cortex during the recognition of new objects and significantly greater left prefrontal cortex regional cerebral blood flow increases during the recognition of previously seen objects. Patients with schizophrenia exhibited alarm rates to new objects similar to those of control subjects, but significantly lower recognition rates for previously seen objects. CONCLUSIONS: Schizophrenia is associated with attenuated right thalamic and right prefrontal activation during the recognition of novel visual stimuli and with increased left prefrontal cortical activation during impaired episodic recognition of previously seen visual stimuli. This study provides further evidence for abnormal thalamic and prefrontal cortex function in schizophrenia.  相似文献   

6.
We have recently reported (Saykin et al., 1999b) selective activation of left medial temporal lobe structures during processing of novel compared to familiar words using functional magnetic resonance imaging (fMRI). The current study describes the relationship between a widely used clinical test of verbal learning, the California Verbal Learning Test (CVLT), and the previously reported fMRI activations. Thirteen right-handed healthy adult participants were studied with whole brain echo-planar fMRI while listening to novel and recently learned (familiar) words intermixed pseudorandomly in an event-related design. These participants were also tested with the CVLT. Scores for CVLT Trial 1 (immediate encoding of novel words) and recognition discriminability (recognition of familiar vs. novel words) were correlated with fMRI signal change during processing of novel versus familiar words using a covariance model implemented in SPM96. For the novel words analysis, voxels in the right anterior hippocampus correlated significantly with Trial 1 (r = .76 at the maxima). For the recognition analysis, a significant cluster of voxels was found in the right dorsolateral prefrontal cortex (r = .88 at the maxima). Our prior results of separable left medial temporal activation to novel and familiar words, together with results of the covariance analyses reported here, suggest that in addition to the left medial temporal lobe (MTL) regions that are engaged during novel and familiar word processing, the right hippocampus and right frontal lobe are also involved, particularly in those participants with better memory ability. This positive relationship between fMRI activation and CVLT performance suggests a role for these right hemisphere regions in successful memory processing of verbal material, perhaps reflecting more efficient encoding and retrieval strategies that facilitate memory.  相似文献   

7.
Cognitive deficits, including impaired verbal memory, are prominent in schizophrenia and lead to increased disability. Functional neuroimaging of patients with schizophrenia performing memory tasks has revealed abnormal activation patterns in prefrontal cortex and temporo-limbic regions. Aberrant fronto-temporal interactions thus represent a potential pathophysiological mechanism underlying verbal memory deficits, yet this hypothesis of disturbed connectivity is not tested directly with standard activation studies. We performed within-subject correlations of frontal and temporal timeseries to measure functional connectivity during verbal encoding. Our results confirm earlier findings of aberrant fronto-temporal connectivity in schizophrenia, and extend them by identifying distinct alterations within dorsal and ventral prefrontal cortex. Relative to healthy controls, patients with schizophrenia had reduced connectivity between the dorsolateral prefrontal cortex (DLPFC) and temporal lobe areas including parahippocampus and superior temporal gyrus. In contrast, patients showed increased connectivity between a region of ventrolateral prefrontal cortex (VLPFC) and these same temporal lobe regions. Higher temporal-DLPFC connectivity during encoding was associated with better subsequent recognition accuracy in controls, but not patients. Temporal-VLPFC connectivity was uncorrelated with recognition accuracy in either group. The results suggest that reduced temporal-DLPFC connectivity in schizophrenia could underlie encoding deficits, and increased temporal-VLPFC connectivity may represent an ineffective compensatory effort.  相似文献   

8.
Schizophrenia patients have significant memory difficulties that have far-reaching implications in their daily life. These impairments are partly attributed to an inability to self-initiate effective memory encoding strategies, but its core neurobiological correlates remain unknown. The current study addresses this critical gap in our knowledge of episodic memory impairments in schizophrenia. Schizophrenia patients (n = 35) and healthy controls (n = 23) underwent a Semantic Encoding Memory Task (SEMT) during an fMRI scan. Brain activity was examined for conditions where participants were a) prompted to use semantic encoding strategies, or b) not prompted but required to self-initiate such strategies. When prompted to use semantic encoding strategies, schizophrenia patients exhibited similar recognition performance and brain activity as healthy controls. However, when required to self-initiate these strategies, patients had significant reduced recognition performance and brain activity in the left dorsolateral prefrontal cortex, as well as in the left temporal gyrus, left superior parietal lobule, and cerebellum. When patients were divided based on performance on the SEMT, the subgroup with more severe deficits in self-initiation also showed greater reduction in left dorsolateral prefrontal activity. These results suggest that impaired self-initiation of elaborative encoding strategies is a driving feature of memory deficits in schizophrenia. We also identified the neural correlates of impaired self-initiation of semantic encoding strategies, in which a failure to activate the left dorsolateral prefrontal cortex plays a key role. These findings provide important new targets in the development of novel treatments aiming to improve memory and ultimately patients' outcome.  相似文献   

9.
BACKGROUND: Recent work suggests that episodic memory deficits in schizophrenia may be related to disturbances of encoding or retrieval. Schizophrenia patients appear to benefit from instruction in episodic memory strategies. We tested the hypothesis that providing effective encoding strategies to schizophrenia patients enhances encoding-related brain activity and recognition performance. METHODS: Seventeen schizophrenia patients and 26 healthy comparison subjects underwent functional magnetic resonance imaging scans while performing incidental encoding tasks of words and faces. Subjects were required to make either deep (abstract/concrete) or shallow (alphabetization) judgments for words and deep (gender) judgments for faces, followed by subsequent recognition tests. RESULTS: Schizophrenia and comparison subjects recognized significantly more words encoded deeply than shallowly, activated regions in inferior frontal cortex (Brodmann area 45/47) typically associated with deep and successful encoding of words, and showed greater left frontal activation for the processing of words compared with faces. However, during deep encoding and material-specific processing (words vs. faces), participants with schizophrenia activated regions not activated by control subjects, including several in prefrontal cortex. CONCLUSIONS: Our findings suggest that a deficit in use of effective strategies influences episodic memory performance in schizophrenia and that abnormalities in functional brain activation persist even when such strategies are applied.  相似文献   

10.
OBJECTIVE: To use functional magnetic resonance imaging (fMRI) to investigate functional connectivity, and hence, underlying neural networks, in never-treated, first-episode patients with schizophrenia using a word fluency paradigm known to activate prefrontal, anterior cingulate, and thalamic regions. Abnormal connectivity between the prefrontal cortex (PFC) and other brain regions has been demonstrated in chronic, medicated patients in previous positron emission tomography (PET) studies, but has not to our knowledge, previously been demonstrated using both first-episode, drug-na?ve patients and fMRI technology. METHODS: A 4.0-Tesla (T) fMRI was used to examine activation and functional connectivity [psychophysiological interactions (PPIs)] during a word fluency task compared to silent reading in 10 never-treated, first-episode patients with schizophrenia and 10 healthy volunteers of comparable age, sex, handedness, and parental education. RESULTS: Compared to healthy volunteers, the schizophrenia patient group exhibited less activation during the word fluency task, mostly in the right anterior cingulate and prefrontal regions. Psychophysiological interactions between right anterior cingulate and other parts of the brain revealed a localized interaction with the left temporal lobe in healthy volunteers during the task and a widespread unfocussed interaction in patients. CONCLUSION: These findings suggest anterior cingulate involvement in the neuronal circuitry underlying schizophrenia.  相似文献   

11.
OBJECTIVE: In patients with schizophrenia, impaired hippocampal activation either during encoding or recognition tasks has been observed in a few functional imaging experiments. In this fMRI study, the authors report results of word encoding and recognition in schizophrenia patients and healthy comparison subjects, with a special focus on correcting for behavioral recognition success in order to prevent a bias related to lower task performance in the schizophrenia patients. METHOD: The verbal encoding and recognition tasks were both first analyzed irrespective of recognition success. In a second analysis, recognition success was included in the block-designed encoding task as a covariate of no interest, and incorrectly classified items were rejected from the analysis of the event-related recognition task. RESULTS: Patients performed poorer on the recognition task than the comparison subjects. Bilateral hippocampal activation during encoding and recognition was observed in both groups. Right hippocampal activation in patients during recognition became significant only after exclusion of wrongly classified items. Group comparison revealed greater activation in the healthy comparison subjects in the left anterior hippocampus during encoding and bilaterally during recognition. Greater bilateral hippocampal activation in the healthy subjects and greater activation in the right anterior hippocampus in the schizophrenic patients were revealed after presentation of novel words, which were intermixed with previously encoded words in the recognition task. After exclusion of incorrectly classified items, the differences in the right hippocampus remained significant. CONCLUSIONS: This study provides evidence for disturbed hippocampal function during verbal encoding and recognition in patients with schizophrenia. It extends previous studies by correcting for the possible confound of differences in behavioral task performance. This approach further supports the concept of hippocampal dysfunction in schizophrenia.  相似文献   

12.
Functional neuroimaging studies have demonstrated preferential involvement of bilateral prefrontal cortex during episodic memory encoding and retrieval. The aim of the present study is to address the question whether left prefrontal model for encoding holds when highly non-verbal material is used, and which region of the brain is critically related to successful retrieval. To do this, seven normal subjects were investigated using functional magnetic resonance imaging (fMRI) during encoding and retrieval of word and checkerboard pattern. Our results revealed that word encoding activated the left prefrontal cortices and right cerebellum, whereas pattern encoding activated the bilateral middle frontal gyrus, superior parietal lobule, premotor area, and occipital visual cortex. Word-specific activation was found in the ventral prefrontal cortices, and pattern-specific activation located in the right dorsal prefrontal cortex. Conjunction analysis during encoding of word and pattern showed that activity in the left dorsal prefrontal cortex and the right cerebellum might relate to common neural network for encoding regardless of the type of material. Finally, the present study demonstrates strong association between the left ventral prefrontal cortex and retrieval success for word. The evidence, that both encoding and retrieval of words activated the left ventral prefrontal cortex, indicates that this area is involved in active and strategic operation of the mnemonic representation. A lack of the right prefrontal activation during retrieval was interpreted as that activity in this region might relate to retrieval effort rather than success.  相似文献   

13.
We used event-related functional magnetic resonance imaging (efMRI) to investigate brain regions showing differential responses as a function of confidence in an episodic word recognition task. Twelve healthy volunteers indicated whether their old-new judgments were made with high or low confidence. Hemodynamic responses associated with each judgment were modeled with an "early" and a "late" response function. As predicted by the monitoring hypothesis generated from a previous recognition study [Henson, R. N. A., Rugg, M. D., Shallice, T., Josephs, O., & Dolan, R. J. (1999a). Recollection and familiarity in recognition memory: An event-related fMRI study. Journal of Neuroscience, 19, 3962-3972], a right dorsolateral prefrontal region showed a greater response to correct low- versus correct high-confidence judgements. Several regions, including the precuneus, posterior cingulate, and left lateral parietal cortex, showed greater responses to correct old than correct new judgements. The anterior left and right prefrontal regions also showed an old-new difference, but for these regions the difference emerged relatively later in time. These results further support the proposal that different subregions of the prefrontal cortex subserve different functions during episodic retrieval. These functions are discussed in relation to a monitoring process, which operates when familiarity levels are close to response criterion and is associated with nonconfident judgements, and a recollective process, which is associated with the confident recognition of old words.  相似文献   

14.
OBJECTIVE: The dorsolateral prefrontal cortex and the anterior cingulate cortex are critical components of the brain circuitry underlying executive control. The objective of this study was to investigate control-related dorsolateral prefrontal cortex functioning and conflict-related anterior cingulate cortex functioning in a group of never medicated first-episode schizophrenia patients to determine whether both regions show dysfunction at illness onset. A second objective was to assess short-term effects of atypical antipsychotic medication on dorsolateral prefrontal cortex and anterior cingulate cortex functioning. METHOD: First-episode schizophrenia patients (N=23) and healthy comparison subjects (N=24) underwent event-related fMRI and performed a cognitive task designed to functionally dissociate the two regions. Four weeks after initiation of pharmacotherapy for patients, a subset of 11 patients and 16 comparison subjects underwent a repeat assessment. RESULTS: At baseline, patients exhibited hypoactivation in the dorsolateral prefrontal cortex and anterior cingulate cortex. After 4 weeks of antipsychotic treatment, the patients demonstrated improved functioning in the anterior cingulate cortex but not in the dorsolateral prefrontal cortex. CONCLUSIONS: These findings confirm the presence of dorsolateral prefrontal cortex dysfunction early in the course of schizophrenia and suggest that anterior cingulate cortex functioning may be altered at illness onset as well. Results also suggest that anterior cingulate cortex functioning may be especially sensitive to remedial antipsychotic treatment effects. These findings are consistent with an emerging literature documenting short-term benefits of atypical antipsychotic medication for the neural circuitry underlying cognitive deficits in schizophrenia.  相似文献   

15.
Aging is associated with decrements in both spatial and temporal context retrieval. Functional neuroimaging studies of young adults suggest that there are differences in left versus right lateral prefrontal cortex (PFC) contributions to spatial versus temporal source (recency) retrieval, respectively. The goal of the current study was to determine if age-related decreases in temporal and spatial context retrieval are due to common or distinct changes in PFC function. To address this goal we conducted an event-related functional magnetic resonance imaging (fMRI) study in which young and older adults performed recognition, recency and spatial context retrieval tasks using face stimuli to identify event-related PFC regions associated with these retrieval tasks in both age groups. Our behavioural results indicated that older adults did not differ on recognition performance, but did exhibit a deficit in both context retrieval tasks, compared to young adults. The fMRI results suggest that age-related deficits in both spatial and temporal context retrieval may be linked to functional changes in right dorsolateral and left medial anterior PFC (APFC) function. In addition, based on brain-behaviour correlations in older adults, our results imply that older adults attempt to compensate for these deficits by engaging left dorsolateral PFC during spatial context retrieval and right APFC during temporal context retrieval.  相似文献   

16.
In a previous functional magnetic resonance imaging (fMRI) study of high functioning outpatients with remitted schizophrenia, we found increased activity compared with healthy subjects across multiple areas of the brain, including the dorsolateral frontal cortex and the anterior cingulate, during a modified Stroop task. The same fMRI procedure was used in this subsequent study to investigate eight unmedicated patients during an acute episode of schizophrenia and eight healthy control subjects. Patients showed a reduced activation in dorsolateral prefrontal, anterior cingulate and parietal regions and a higher activation in temporal regions and posterior cingulate compared to healthy controls. Healthy controls showed a trend towards higher accuracy in the modified Stroop task compared to schizophrenia patients. Treatment with second generation antipsychotics may improve executive performance in patients with schizophrenia and facilitate a normalization of functional hypofrontality after symptomatic improvement.  相似文献   

17.
In a previous functional magnetic resonance imaging (fMRI) study of high functioning outpatients with remitted schizophrenia, we found increased activity compared with healthy subjects across multiple areas of the brain, including the dorsolateral frontal cortex and the anterior cingulate, during a modified Stroop task. The same fMRI procedure was used in this subsequent study to investigate eight unmedicated patients during an acute episode of schizophrenia and eight healthy control subjects. Patients showed a reduced activation in dorsolateral prefrontal, anterior cingulate and parietal regions and a higher activation in temporal regions and posterior cingulate compared to healthy controls. Healthy controls showed a trend towards higher accuracy in the modified Stroop task compared to schizophrenia patients. Treatment with second generation antipsychotics may improve executive performance in patients with schizophrenia and facilitate a normalization of functional hypofrontality after symptomatic improvement.  相似文献   

18.
BACKGROUND: We used an event-related functional Magnetic Resonance Imaging (fMRI) approach to examine the neural basis of the selective associative memory deficit in schizophrenia. METHODS: Fifteen people with schizophrenia and 18 controls were scanned during a pair and item memory encoding and recognition task. During encoding, subjects studied items and pairs of visual objects. In a subsequent retrieval task, participants performed an item recognition memory test (old/new decisions) and an associative recognition test (intact/rearranged decisions). The fMRI analysis of the recognition data was restricted to correct items only and a random effects model was used. RESULTS: At the behavioral level, both groups performed equally well on item recognition, whereas people with schizophrenia demonstrated lower performance on associative recognition relative to the control group. At the brain level, the comparison between associative and item encoding revealed greater activity in the control group in the left prefrontal cortex and cingulate gyrus relative to the schizophrenia group. During recognition, greater left dorsolateral prefrontal and right inferior prefrontal activations were observed in the control group relative to the schizophrenia group. CONCLUSION: This fMRI study implicates the prefrontal cortex among other brain regions as the basis for the selective associative memory encoding and recognition deficit seen in schizophrenia.  相似文献   

19.
Declarative memory allows an organism to discriminate between previously encountered and novel items, and to place past encounters in time. Numerous imaging studies have investigated the neural processes supporting item recognition, whereas few have examined retrieval of temporal information. In the present study, functional magnetic resonance imaging (fMRI) was conducted while subjects engaged in temporal recency and item novelty decisions. Subjects encountered three-alternative forced-choice retrieval trials, each consisting of two words from a preceding study phase and one novel word, and were instructed to either identify the novel item (Novelty trials) or the more recently presented study item (Recency trials). Relative to correct Novelty decisions, correct Recency decisions elicited greater activation in a network of left-lateralized regions, including frontopolar and dorsolateral prefrontal cortex and intraparietal sulcus. A conjunction analysis revealed that these left-lateralized regions overlapped with those previously observed to be engaged during source recollection versus novelty detection, suggesting that during Recency trials subjects attempted to recollect event details. Consistent with this interpretation, correct Recency decisions activated posterior hippocampus and parahippocampal cortex, whereas incorrect Recency decisions elicited greater anterior cingulate activation. The magnitude of this latter effect positively correlated with activation in right dorsolateral prefrontal cortex. Finally, correct Novelty decisions activated the anterior medial temporal lobe to a greater extent than did correct Recency decisions, suggesting that medial temporal novelty responses are not obligatory but rather can be modulated by the goal-directed allocation of attention. Collectively, these findings advance understanding of how subjects strategically engage frontal and parietal mechanisms in the service of attempting to remember the temporal order of events, and how retrieval goals impact novelty processing within the medial temporal lobe.  相似文献   

20.
Studies have demonstrated that episodic memory (EM) is often preferentially disrupted in schizophrenia. The neural substrates that mediate EM impairment in this illness are not fully understood. Several functional magnetic resonance imaging (fMRI) studies have employed EM probe tasks to elucidate the neural underpinnings of impairment, though results have been inconsistent. The majority of EM imaging studies have been conducted in chronic forms of schizophrenia with relatively few studies in early phase patients. Early phase schizophrenia studies are important because they may provide information regarding when EM deficits occur and address potential confounds more frequently observed in chronic populations. In this study, we assessed brain activation during the performance of visual scene encoding and recognition fMRI tasks in patients with earlyphase psychosis (n?=?35) and age, sex, and race matched healthy control subjects (n?=?20). Patients demonstrated significantly lower activation than controls in the right hippocampus and left fusiform gyrus during scene encoding and lower activation in the posterior cingulate, precuneus, and left middle temporal cortex during recognition of target scenes. Symptom levels were not related to the imaging findings, though better cognitive performance in patients was associated with greater right hippocampal activation during encoding. These results provide evidence of altered function in neuroanatomical circuitry subserving EM early in the course of psychotic illness, which may have implications for pathophysiological models of this illness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号