首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: BACKGROUND: Fatty acid synthase (FASN) is overexpressed and hyperactivated in several human carcinomas, including lung cancer. We characterize and compare the anti-cancer effects of the FASN inhibitors C75 and (-)-epigallocatechin-3-gallate (EGCG) in a lung cancer model. METHODS: We evaluated in vitro the effects of C75 and EGCG on fatty acid metabolism (FASN and CPT enzymes), cellular proliferation, apoptosis and cell signaling (EGFR, ERK1/2, AKT and mTOR) in human A549 lung carcinoma cells. In vivo, we evaluated their anti-tumor activity and their effect on body weight in a mice model of human adenocarcinoma xenograft. RESULTS: C75 and EGCG had comparable effects in blocking FASN activity (96,9 % and 89,3 % of inhibition, respectively). In contrast, EGCG had either no significant effect in CPT activity, the rate-limiting enzyme of fatty acid beta-oxidation, while C75 stimulated CPT up to 130 %. Treating lung cancer cells with EGCG or C75 induced apoptosis and affected EGFR-signaling. While EGCG abolished p-EGFR, p-AKT, p-ERK1/2 and p-mTOR, C75 was less active in decreasing the levels of EGFR and p-AKT. In vivo, EGCG and C75 blocked the growth of lung cancer xenografts but C75 treatment, not EGCG, caused a marked animal weight loss. CONCLUSIONS: In lung cancer, inhibition of FASN using EGCG can be achieved without parallel stimulation of fatty acid oxidation and this effect is related mainly to EGFR signaling pathway. EGCG reduce the growth of adenocarcinoma human lung cancer xenografts without inducing body weight loss. Taken together, EGCG may be a candidate for future pre-clinical development.  相似文献   

2.
Fatty acid synthase (FASN) is a novel druggable target for metabolically treating and preventing human malignancies. We envisioned that if loss of sensitivity to C75 (a slow-binding FASN inhibitor) occurs in parallel with loss of FASN expression and/or activity, a mathematical assessment of the nature of the interaction between investigational FASN modulators and C75 may predict the ability of experimental compounds to regulate FASN. We statistically compared the arithmetical sums of the anti-proliferative effects obtained when FASN modulators and C75 were used as single agents to those observed experimentally when agents were actually combined in a sequential schedule (i.e., FASN modulator-->C75). A reduced sensitivity to C75 (antagonism) occurred when compounds down-regulated FASN activity/expression, while an enhanced C75 efficacy (synergism) was found following exposure to FASN up-regulators. This "C75-sensitivity test" might offer an easy, rapid and objective method to identify FASN inhibitors with potential anticancer value in human cancer.  相似文献   

3.
A biologically aggressive subset of human breast cancers and other malignancies is characterized by elevated fatty-acid synthase (FAS) enzyme expression, elevated fatty acid (FA) synthesis, and selective sensitivity to pharmacological inhibition of FAS activity by cerulenin or the novel compound C75. In this study, inhibition of FA synthesis at the physiologically regulated step of carboxylation of acetyl-CoA to malonyl-CoA by 5-(tetradecyloxy)-2-furoic acid (TOFA) was not cytotoxic to breast cancer cells in clonogenic assays. FAS inhibitors induced a rapid increase in intracellular malonyl-CoA to several fold above control levels, whereas TOFA reduced intracellular malonyl-CoA by 60%. Simultaneous exposure of breast cancer cells to TOFA and an FAS inhibitor resulted in significantly reduced cytotoxicity and apoptosis. Subcutaneous xenografts of MCF7 breast cancer cells in nude mice treated with C75 showed FA synthesis inhibition, apoptosis, and inhibition of tumor growth to less than 1/8 of control volumes, without comparable toxicity in normal tissues. The data suggest that differences in intermediary metabolism render tumor cells susceptible to toxic fluxes in malonyl-CoA, both in vitro and in vivo.  相似文献   

4.
5.
Fatty acid synthase (FASN) is a key enzyme that plays a critical role in numerous metabolic functions by catalyzing the synthesis for long-chain fatty acids. FASN is highly expressed in various human cancers. This preferential expression makes FASN an attractive target for anticancer therapy. Hexokinase II (HKII) is overexpressed in most cancer cells, and it generally localizes to the outer mitochondrial membrane. Recent studies have demonstrated the protective role of mitochondrial HKII in preservation of mitochondrial integrity. The association of hexokinase with mitochondria has emerged as a powerful mechanism in protecting numerous cell types against cell death. We performed this study to examine the mechanism underlying apoptosis induced by cerulenin and with specific focus on its effect on HKII in ZR-75-1 human breast cancer cells. Additionally, we sought to elucidate whether inhibition of the PI3K/Akt pathway can potentiate the anticancer effect of cerulenin. Here, we showed that cerulenin disrupts the physical association between HKII and AIF, leading to eventual cell death. In addition, LY294002, a PI3K/Akt inhibitor, sensitized ZR-75-1 breast cancer cells to cerulenin-induced apoptosis. Collectively, cerulenin induces apoptosis via disrupting the interaction between AIF and HKII and inhibition of PI3K sensitizes cells to cerulenin-induced apoptosis in ZR-75-1 cells.  相似文献   

6.

Introduction

The human epidermal growth factor receptor 2 (HER2) is a validated therapeutic target in breast cancer. Heterodimerization of HER2 with other HER family members results in enhanced tyrosine phosphorylation and activation of signal transduction pathways. HER2 overexpression increases the translation of fatty acid synthase (FASN), and FASN overexpression markedly increases HER2 signaling, which results in enhanced cell growth. However, the molecular mechanism and regulation of HER2 and FASN interaction are not well defined. Lapatinib is a small-molecule tyrosine kinase inhibitor that blocks phosphorylation of the epidermal growth factor receptor and HER2 in breast cancer cells, resulting in apoptosis. We hypothesized that FASN is directly phosphorylated by HER2, resulting in enhanced signaling and tumor progression in breast cancer cells.

Methods

Using mass spectrometry, we identified FASN as one of the proteins that is dephosphorylated by lapatinib in SKBR3 breast cancer cells. Immunofluorescence, immunoprecipitation, Western blotting, a kinase assay, a FASN enzymatic activity assay, an invasion assay, a cell viability assay and zymography were used to determine the role of FASN phosphorylation in invasion of SKBR3 and BT474 cells. The FASN inhibitor C75 and small interfering RNA were used to downregulate FASN expression and/or activity.

Results

Our data demonstrated that FASN is phosphorylated when it is in complex with HER2. FASN phosphorylation was induced by heregulin in HER2-overexpressing SKBR3 and BT474 breast cancer cells. Heregulin-induced FASN phosphorylation resulted in increased FASN enzymatic activity, which was inhibited by lapatinib. The FASN inhibitor C75 suppressed FASN activity by directly inhibiting HER2 and FASN phosphorylation. Blocking FASN phosphorylation and activity by lapatinib or C75 suppressed the activity of matrix metallopeptidase 9 and inhibited invasion of SKBR3 and BT474 cells.

Conclusions

FASN phosphorylation by HER2 plays an important role in breast cancer progression and may be a novel therapeutic target in HER2-overexpressing breast cancer cells.  相似文献   

7.
The de novo fatty acid synthesis catalyzed by key lipogenic enzymes, including fatty acid synthase (FASN) has emerged as one of the novel targets of anti-cancer approaches. The present study explored the possible inhibitory efficacy of [6]-gingerol on de novo fatty acid synthesis associated with mitochondrial-dependent apoptotic induction in HepG2 cells. We observed a dissipation of mitochondrial membrane potential accompanied by a reduction of fatty acid levels. [6]-gingerol administration manifested inhibition of FASN expression, indicating FASN is a major target of [6]-gingerol inducing apoptosis in HepG2 cells. Indeed, we found that increased ROS generation could likely be a mediator of the anti-cancer effect of [6]-gingerol. A reduction of fatty acid levels and induction of apoptosis were restored by inhibition of acetyl-CoA carboxylase (ACC) activity, suggesting an accumulation of malonyl-CoA level could be the major cause of apoptotic induction of [6]-gingerol in HepG2 cells. The present study also showed that depletion of fatty acid following [6]-gingerol treatment caused an inhibitory effect on carnitine palmitoyltransferase-1 activity (CPT-1), whereas C75 augmented CPT-1 activity, indicating that [6]-gingerol exhibits the therapeutic benefit on suppression of fatty acid β-oxidation.  相似文献   

8.
C75, an inhibitor of fatty acid synthase (FAS), induces apoptosis in cultured human cancer cells. Its proposed mechanism of action linked high levels of malonyl-CoA after FAS inhibition to potential downstream effects including inhibition of carnitine palmitoyltransferase-1 (CPT-1) with resultant inhibition of fatty acid oxidation. Recent data has shown that C75 directly stimulates CPT-1 increasing fatty acid oxidation in MCF-7 human breast cancer cells despite inhibitory concentrations of malonyl-CoA. In light of these findings, we have studied fatty acid metabolism in MCF7 human breast cancer cells to elucidate the mechanism of action of C75. We now report that: (a) in the setting of increased fatty acid oxidation, C75 inhibits fatty acid synthesis; (b) C273, a reduced form of C75, is unable to inhibit fatty acid synthesis and is nontoxic to MCF7 cells; (c) C75 and 5-(tetradecyloxy)-2-furoic acid (TOFA), an inhibitor of acetyl-CoA carboxylase, both cause a significant reduction of fatty acid incorporation into phosphatidylcholine, the major membrane phospholipid, within 2 h; (d) pulse chase studies with [(14)C]acetate labeling of membrane lipids show that both C75 and TOFA accelerate the decay of (14)C-labeled lipid from membranes within 2 h; (e) C75 also promotes a 2-3-fold increase in oxidation of membrane lipids within 2 h; and (f) because interference with phospholipid synthesis during S phase is known to trigger apoptosis in cycling cells, we performed double-labeled terminal deoxynucleotidyltransferase-mediated nick end labeling and BrdUrd analysis with both TOFA and C75. C75 triggered apoptosis during S phase, whereas TOFA did not. Moreover, application of TOFA 2 h before C75 blocked the C75 induced apoptosis, whereas etomoxir did not. Taken together these data indicate that FAS inhibition and its downstream inhibition of phospholipid production is a necessary part of the mechanism of action of C75. CPT-1 stimulation does not likely play a role in the cytotoxic response. The continued ability of TOFA to rescue cancer cells from C75 cytotoxicity implies a proapoptotic role for malonyl-CoA independent of CPT-1 that selectively targets cancer cells as they progress into S phase.  相似文献   

9.
Chemical inhibitors of fatty acid synthase (FAS) inhibit growth and induce apoptosis in several cancer cell lines in vitro and in tumor xenografts in vivo. Recently the green tea component epigallocatechin-3-gallate (EGCG) was shown to act as a natural inhibitor of FAS in chicken liver extracts. Here we investigated whether EGCG inhibits FAS activity in cultured prostate cancer cells and how this inhibition affects endogenous lipid synthesis, cell proliferation and cell viability. The high levels of FAS activity in LNCaP cells were dose-dependently inhibited by EGCG and this inhibition was paralleled by decreased endogenous lipid synthesis, inhibition of cell growth and induction of apoptosis. In contrast, epicatechin (EC), another closely related green tea polyphenolic compound, which does not inhibit FAS, had no effect on LNCaP cell growth or viability. Treatment of nonmalignant cells with low levels of FAS activity (fibroblasts) with EGCG led to a decrease in growth rate but not to induction of apoptosis. These data indicate that EGCG inhibits FAS activity as efficiently as presently known synthetic inhibitors and selectively causes apoptosis in LNCaP cells but not in nontumoral fibroblasts. These findings establish EGCG as a potent natural inhibitor of FAS in intact cells and strengthen the molecular basis for the use of EGCG as a chemopreventive and therapeutic antineoplastic agent.  相似文献   

10.
Fatty acid synthase (FASN), catalyzing the de novo synthesis of fatty acids, is known to be deregulated in several cancers. Inhibition of this enzyme reduces tumor cell proliferation. Unfortunately, adverse effects and chemical instability prevent the in vivo use of the best-known inhibitors, Cerulenin and C75. Orlistat, a drug used for obesity treatment, is also considered as a potential FASN inhibitor, but its impact on glioma cell biology has not yet been described. In this study, we analyzed FASN expression in human glioma samples and primary glioblastoma cell cultures and the effects of FASN inhibition with Orlistat, Cerulenin and C75. Immunohistochemistry followed by densitometric analysis of 20 glioma samples revealed overexpression of FASN that correlated with the WHO tumor grade. Treatment of glioblastoma cells with these inhibitors resulted in a significant, dose-dependent reduction in tumor cell viability and fatty acid synthesis. Compared to Cerulenin and C75, Orlistat was a more potent inhibitor in cell cultures and cell lines. In LN229, cell-growth was reduced by 63.9 ± 8.7 % after 48 h and 200 µM Orlistat compared to controls; in LT68, the reduction in cell growth was 76.3 ± 23.7 %. Nuclear fragmentation assay and Western blotting analysis after targeting FASN with Orlistat demonstrated autophagy and apoptosis. Organotypic slice cultures treated with Orlistat showed reduced proliferation after Ki67 staining and increased caspase-3 cleavage. Our results suggest that FASN may be a therapeutic target in malignant gliomas and identify Orlistat as a possible anti-tumor drug in this setting.  相似文献   

11.
Onions (Allium cepa L.) are widely used in the food industry for its nutritional and aromatic properties.Our studies showed that ethyl acetate extract of onion (EEO) had potent inhibitory effects on animal fatty acidsynthase (FAS), and could induce apoptosis in FAS over-expressing human breast cancer MDA-MB-231 cells.Furthermore, this apoptosis was accompanied by reduction of intracellular FAS activity and could be rescuedby 25 mM or 50 mM exogenous palmitic acids, the final product of FAS catalyzed synthesis. These resultssuggest that the apoptosis induced by EEO occurs via inhibition of FAS. We also found that EEO could suppresslipid accumulation during the differentiation of 3T3-L1 adipocytes, which was also related to its inhibition ofintracellular FAS activity. Since obesity is closely related to breast cancer and obese patients are at elevated riskof developing various cancers, these findings suggested that onion might be useful for preventing obesity-relatedmalignancy.  相似文献   

12.
Overexpression of fatty acid synthase (FASN), a key regulator of the de novo synthesis of fatty acids, has been demonstrated in a variety of cancers and is associated with poor prognosis and increased multidrug resistance. Inhibition of FASN with the anti‐obesity drug orlistat has been shown to have significant anti‐tumourigenic effects in many cancers, notably breast and prostate. In our study, we investigated whether FASN inhibition using orlistat is an effective adjunctive treatment for ovarian cancers that have become platinum resistant using a cisplatin‐resistant ovarian tumour xenograft model in mice. Mice were treated with orlistat or cisplatin or a combination and metabolite analysis and histopathology were performed on the tumours ex vivo. Orlistat decreased tumour fatty acid metabolism by inhibiting FASN, cisplatin reduced fatty acid β‐oxidation, and combination treatment delayed tumour growth and induced apoptotic and necrotic cell death in cisplatin‐resistant ovarian cancer cells over and above that with either treatment alone. Combination treatment also decreased glutamine metabolism, nucleotide and glutathione biosynthesis and fatty acid β‐oxidation. Our data suggest that orlistat chemosensitised platinum‐resistant ovarian cancer to treatment with platinum and resulted in enhanced efficacy.  相似文献   

13.
Fatty acid synthase (FASN) is the enzyme responsible for the endogenous synthesis of the saturated fatty acid palmitate. In contrast to most normal cells, malignant cells depend on FASN activity for growth and survival. In fact, FASN is overexpressed in a variety of human cancers including cutaneous melanoma, in which its levels of expression are associated with a poor prognosis and depth of invasion. Here, we show that the specific inhibition of FASN activity by the antiobesity drug Orlistat or siRNA is able to significantly reduce proliferation and promote apoptosis in the mouse metastatic melanoma cell line B16-F10. These results prompted us to verify the effect of FASN inhibition on the metastatic process in a model of spontaneous melanoma metastasis, in which B16-F10 cells injected in the peritoneal cavity of C57BL/6 mice metastasize to the mediastinal lymph nodes. We observed that mice treated with Orlistat 48 hr after the inoculation of B16-F10 cells exhibited a 52% reduction in the number of mediastinal lymph node metastases, in comparison with the control animals. These results suggest that FASN activity is essential for B16-F10 melanoma cell proliferation and survival while its inactivation by Orlistat significantly reduces their metastatic spread. The chemical inhibition of FASN activity could have a potential benefit in association with the current chemotherapy for melanoma.  相似文献   

14.
The relationship between breast cancer-associated fatty acid synthase (FAS; oncogenic antigen-519) and chemotherapy-induced cell damage has not been studied. We examined the ability of C75, a synthetic slow-binding inhibitor of FAS activity, to modulate the cytotoxic activity of the microtubule-interfering agent Taxol (paclitaxel) in SK-Br3, MDA-MB-231, MCF-7 and multidrug-resistant MDR-1 (P-Glycoprotein)-overexpressing MCF-7/AdrR breast cancer cells. When the combination of C75 with Taxol in either concurrent (C75 + Taxol 24 hr) or sequential (C75 24 hr --> Taxol 24 hr) schedules were tested for synergism, addition or antagonism using the isobologram and the median-effect plot analyses, co-exposure of C75 and Taxol mostly demonstrated synergistic effects, whereas sequential exposure to C75 followed by Taxol mainly showed additive or antagonistic interactions. Because the nature of the cytotoxic interactions was definitely schedule-dependent in MCF-7 cells, we next evaluated the effects of C75 on Taxol-induced apoptosis as well as Taxol-activated cell death and cell survival-signaling pathways in this breast cancer cell model. An ELISA for histone-associated DNA fragments demonstrated that C75 and Taxol co-exposure caused a synergistic enhancement of apoptotic cell death, whereas C75 pre-treatment did not enhance the apoptosis-inducing activity of Taxol. Co-exposure to C75 and Taxol induced a remarkable nuclear accumulation of activated p38 mitogen-activated protein kinase (p38 MAPK), which was accompanied by a synergistic nuclear accumulation of the p53 tumor-suppressor protein that was phosphorylated at Ser46, a p38 MAPK-regulated pro-apoptotic modification of p53. As single agents, FAS blocker C75 and Taxol induced a significant stimulation of the proliferation and cell survival mitogen-activated protein kinase extracellular signal-regulated kinase (ERK1/ERK2 MAPK) activity, whereas, in combination, they interfered with ERK1/ERK2 activation. Moreover, the combined treatment of C75 and Taxol inactivated the anti-apoptotic AKT (protein kinase B) kinase more than either agent alone, as evidenced by a synergistic down-regulation of AKT phosphorylation at its activating site Ser(473) without affecting AKT protein levels. To rule out a role for non-FAS C75-mediated effects, we finally used the potent and highly sequence-specific mechanism of RNA interference (RNAi) to block FAS-dependent signaling. Importantly, SK-Br3 and multi-drug resistant MCF-7/AdrR cells transiently transfected with sequence-specific double-stranded RNA oligonucleotides targeting FAS gene demonstrated hypersensitivity to Taxol-induced apoptotic cell death. Our findings establish for the first time that FAS blockade augments the cytotoxicity of anti-mitotic drug Taxol against breast cancer cells and that this chemosensitizing effect is schedule-dependent. We suggest that the alternate activation of both the pro-apoptotic p38 MAPK-p53 signaling and the cytoprotective MEK1/2 --> ERK1/2 cascade, as well as the inactivation of the anti-apoptotic AKT activity may explain, at least in part, the sequence-dependent enhancement of Taxol-induced cytotoxicity and apoptosis that follows inhibition of FAS activity in breast cancer cells. If chemically stable FAS inhibitors demonstrate systemic anticancer effects of FAS inhibition in vivo, these findings may render FAS as a valuable molecular target to enhance the efficacy of taxanes-based chemotherapy in human breast cancer.  相似文献   

15.
乳腺癌是女性最常见的恶性肿瘤,随着肿瘤代谢研究的深入,脂代谢在乳腺癌发生发展中的作用越来越受到重视。内源性脂肪酸合成是肿瘤细胞脂肪酸的主要来源,也是肿瘤细胞的一个重要特征,靶向内源性脂肪酸合成治疗乳腺癌已经成为了一个研究热点。脂肪酸合成途径的相关酶包括ATP-柠檬酸裂解酶(adenosine triphosphate-citrate lyase,ACL)、乙酰辅酶A羧化酶1(acetyl-CoA carboxylase 1,ACC1)、脂肪酸合酶(fatty acid synthase,FASN)和硬脂酰辅酶A去饱和酶1(stearoyl-CoA desaturase-1,SCD1)在乳腺癌发生发展中发挥重要的作用,成为了乳腺癌治疗的新靶点。本文综述了ACL、ACC1、FASN和SCD1与乳腺癌的临床相关性及意义,在乳腺癌发生发展中的作用和分子机制及其抑制剂治疗乳腺癌的研究进展。  相似文献   

16.
The prostate cancer (PCa) cell lines LNCaP, PC-3, and DU-145 express peroxisome proliferator-activated receptor γ (PPARγ) but its role in PCa is unclear. Thiazolidinediones (TZDs), a family of PPARγ activators and type 2 anti-diabetic drugs, exhibit anti-tumor apoptotic effects in human PCa cell lines. Likewise, pharmacological inhibitors of fatty acid synthase (FASN), a metabolic enzyme highly expressed in PCa, induce apoptosis in prostate and other cancer cells. Here, we show positive correlation between PPARγ and FASN protein in PCa cell lines and synergism between TZDs and FASN blockers in PCa cell viability reduction and apoptosis induction. Combined TZDs/FASN has enhanced anti-tumor properties in both androgen-dependent LNCaP and androgen-independent PC-3 and DU-145 cells when compared with single drug exposure. Low concentrations (5-10 μM) of the TZD drug rosiglitazone failed to alter cell viability but, paradoxically, upregulated lipogenic genes [PPARγ, FASN, sterol regulatory element binding protein-1c (SREBP-1c) and acetyl-Co A carboxylase-1 (ACC1)], which diminish the apoptotic effects of rosiglitazone. The mean IC50 in all cell lines was 45 ± 2 μM for rosiglitazone compared with significantly lower 5 ± 1 μM for rosiglitazone plus the FASN blocker cerulenin, and 10.2 ± 2 μM for rosiglitazone plus the cerulenin synthetic analog C75. The IC50 for the combined rosiglitazone and FASN blockers contrasts with the relatively higher IC50 for rosiglitazone (45 ± 2 μM), the TZD drug troglitazone (13 ± 2 μM), cerulenin (32 ± 1 μM), or C75 (26 ± 3 μM) when these drugs were used alone. In summary, this study shows proof-of-principle for combining FASN blockers and TZDs for PCa treatment.  相似文献   

17.
18.
Ovarian cancer (OC) is caused by genetic aberrations in networks that control growth and survival. Importantly, aberrant cancer metabolism interacts with oncogenic signaling providing additional drug targets. Tumors overexpress the lipogenic enzyme fatty acid synthase (FASN) and are inhibited by FASN blockers, whereas normal cells are FASN‐negative and FASN‐inhibitor‐resistant. Here, we demonstrate that this holds true when ovarian/oviductal cells reside in their autochthonous tissues, whereas in culture they express FASN and are FASN‐inhibitor‐sensitive. Upon subculture, nonmalignant cells cease growth, express senescence‐associated β‐galactosidase, lose FASN and become FASN‐inhibitor‐resistant. Immortalized ovarian/oviductal epithelial cell lines—although resisting senescence—reveal distinct growth activities, which correlate with FASN levels and FASN drug sensitivities. Accordingly, ectopic FASN stimulates growth in these cells. Moreover, FASN levels and lipogenic activities affect cellular lipid composition as demonstrated by thin‐layer chromatography. Correlation between proliferation and FASN levels was finally evaluated in cancer cells such as HOC‐7, which contain subclones with variable differentiation/senescence and corresponding FASN expression/FASN drug sensitivity. Interestingly, senescent phenotypes can be induced in parental HOC‐7 by differentiating agents. In OC cells, FASN drugs induce cell cycle blockade in S and/or G2/M and stimulate apoptosis, whereas in normal cells they only cause cell cycle deceleration without apoptosis. Thus, normal cells, although growth‐inhibited, may survive and recover from FASN blockade, whereas malignant cells get extinguished. FASN expression and FASN drug sensitivity are directly linked to cell growth and correlate with transformation/differentiation/senescence only indirectly. FASN is therefore a metabolic marker of cell proliferation rather than a marker of malignancy and is a useful target for future drug development.  相似文献   

19.
Recent investigations have demonstrated that polyphenolic catechins inhibit cancer cell proliferation and tumor growth. However, how the major active component of tea catechins, epigallocatechin-3 gallate (EGCG), mediates anticancerous effects has not been extensively examined. We have investigated the cell growth inhibitory effects of EGCG on cell growth of the human breast cancer cell line MCF-7, and the mechanism of its action with emphasis on the regulation of tumor cell survival. A significant EGCG dose-dependent growth inhibition was observed coordinated with EGCG-induced apoptosis. Analysis of survivin expression after addition of EGCG showed that both survivin mRNA and protein were decreased. The survivin-promoter luciferase activity in EGCG-treated cells was significantly inhibited by 91+/-2.0% (P<0.001), compared with the control. Interestingly, EGCG strongly inhibited the basal activation of phospho-AKT and AKT kinase activity as early as 30 min after treatment. Furthermore, inhibition of AKT kinase activity by EGCG preceded the suppression of survivin (1 h post treatment), followed by increased caspase-9 activity (6 h post treatment). A dominant negative AKT or the phosphatidylinositol 3-kinase inhibitor, LY294002, also strongly inhibited survivin promoter activity, providing further evidence to support the hypothesis that the inhibitory effect of EGCG on survivin is mediated via the AKT pathway. Therefore, EGCG is a potent proapoptotic agent in MCF-7 breast cancer cells that targets survivin expression via suppression of the AKT pathway.  相似文献   

20.
Inhibition of FASN has emerged as a promising therapeutic target in cancer, and numerous inhibitors have been investigated. However, severe pharmacological limitations have challenged their clinical testing. The synthetic FASN inhibitor triclosan, which was initially developed as a topical antibacterial agent, is merely affected by these pharmacological limitations. Yet, little is known about its mechanism in inhibiting the growth of cancer cells. Here we compared the cellular and molecular effects of triclosan in a panel of eight malignant and non-malignant prostate cell lines to the well-known FASN inhibitors C75 and orlistat, which target different partial catalytic activities of FASN. Triclosan displayed a superior cytotoxic profile with a several-fold lower IC50 than C75 or orlistat. Structure-function analysis revealed that alcohol functionality of the parent phenol is critical for inhibitory action. Rescue experiments confirmed that end product starvation was a major cause of cytotoxicity. Importantly, triclosan, C75 and orlistat induced distinct changes to morphology, cell cycle, lipid content and the expression of key enzymes of lipid metabolism, demonstrating that inhibition of different partial catalytic activities of FASN activates different metabolic pathways. These finding combined with its well-documented pharmacological safety profile make triclosan a promising drug candidate for the treatment of prostate cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号