首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
目的 制备替尼泊苷磷脂复合物白蛋白纳米粒,并表征其理化性质.方法 以人血清白蛋白和蛋黄卵磷脂E80为辅料,替尼泊苷为主药,采用超声法制备替尼泊苷磷脂复合物白蛋白纳米粒及其冻干制剂.以粒径和多分散系数(PDI)为主要考察指标来优化纳米粒的处方及制备工艺;用激光粒度分析仪和透射电镜对其形态和结构进行表征;用葡聚糖凝胶柱法测定纳米粒的包封率和载药量.结果 成功制备了替尼泊苷磷脂复合物白蛋白纳米粒,平均粒径为182.3 ±11.7 nm,PDI为0.168 ±0.02,Zeta电位为-10.75±1.42 mV,包封率为82.27%±2.74%,载药量为4.29%±0.11%;冻干制剂的外观良好,复溶后的粒径和PDI均符合要求.结论 所用方法简单新颖,具有较好的应用前景.  相似文献   

2.
吴燕  田姗  孔健  徐荣 《安徽医药》2016,20(10):1852-1856
目的 以叶酸修饰的生物可降解材料乳酸-羟基乙酸共聚物(PLGA-PEG-FOL)为载体,构建紫杉醇靶向纳米粒并进行评价。方法 采用乳化-分散法,以溶液稳定性、粒径和包封率为评价指标,通过考察乳化剂的用量、有机相种类、水相与有机相比例、聚合物分子量、药载比、剪切速度等因素对纳米粒制备的影响,确定最优处方和制备工艺,并对纳米粒的形态、粒径、Zeta电位、包封率及载药量进行评价。结果 合成了载体PLGA-PEG-FOL;制备的紫杉醇靶向纳米粒为均匀球形粒子,粒径为(88.2±6.7)nm,Zeta电位为(56.5±4.2)mV,包封率为(92.9±3.2)%,载药量为(4.8±1.3)%。结论 纳米粒制备方法简便易行,重现性好。制备的纳米粒大小均匀,粒度分布较窄,包封率和载药量较高。  相似文献   

3.
目的 以叶酸修饰的生物可降解材料乳酸-羟基乙酸共聚物(PLGA-PEG-FOL)为载体,构建紫杉醇靶向纳米粒并进行评价。方法 采用乳化-分散法,以溶液稳定性、粒径和包封率为评价指标,通过考察乳化剂的用量、有机相种类、水相与有机相比例、聚合物分子量、药载比、剪切速度等因素对纳米粒制备的影响,确定最优处方和制备工艺,并对纳米粒的形态、粒径、Zeta电位、包封率及载药量进行评价。结果 合成了载体PLGA-PEG-FOL;制备的紫杉醇靶向纳米粒为均匀球形粒子,粒径为(88.2±6.7)nm,Zeta电位为(56.5±4.2)mV,包封率为(92.9±3.2)%,载药量为(4.8±1.3)%。结论 纳米粒制备方法简便易行,重现性好。制备的纳米粒大小均匀,粒度分布较窄,包封率和载药量较高。  相似文献   

4.
目的 采用Box-Behnken效应面法筛选姜黄素正负离子固体脂质纳米粒的最优处方.方法 采用乳化蒸发-低温固化法制备姜黄素的固体脂质纳米粒,以固体脂质的质量、卵磷脂的质量和混合表面活性剂为考察对象,以包封率和脂质载药量为考察指标,利用3因素3水平Box-Behnken效应面设计法筛选姜黄素固体脂质纳米粒的最优处方.结果 按最优处方制备固体脂质纳米粒的包封率为94.20% ±2.55%、脂质载药量为3.49%±0.11%,平均粒径为194.9 ±12.0 nm,Zeta电位为-28.15 ±2.72 mV.结论 采用Box-Behnken效应面法优化姜黄素正负固体脂质纳米粒的处方是有效、可行的.  相似文献   

5.
目的:负载尼莫地平的聚乙二醇修饰的聚乳酸-羟基乙酸共聚物[poly (ethylene glycol-poly (lactin-co-glycolic acid),PEG-PLGA)]纳米粒,并对其进行制备工艺、质量评价以及体外释放等相关性研究。方法:以PEG-PLGA为药物载体,采用乳化溶剂挥发法成功制备尼莫地平载药纳米粒。单因素实验和响应面法设计优化处方工艺,透射电子显微镜观察纳米粒形态,激光粒度仪测定其粒径和Zeta电位,HPLC法测定其包封率及载药量并考察其体外释药特性。结果:制备的尼莫地平纳米粒外观呈实心球体,大小均匀且分散性良好;平均粒径为(183.2±3.30) nm,PDI为(0.115±0.049),Zata电位为(-11.78±2.16) mV;平均包封率为84.99%,平均载药量为2.45%;尼莫地平原料药在4 h时基本释放完全(达到95%左右),而尼莫地平纳米粒在4 h时释放仅为43.9%,在第24 h时累计释放度达到(83.66±2.57)%。与对照组相比,制剂组释放缓慢,符合实验设计缓释的要求。结论:本实验成功制备了尼莫地平PEG-PLGA纳米粒,其体外释药具有明显缓释特征,为心脑血管疾病的治疗奠定了基础。  相似文献   

6.
N-琥珀酰壳聚糖纳米粒的制备及体外评价   总被引:4,自引:0,他引:4  
目的制备N-琥珀酰壳聚糖纳米粒并对其进行体外评价。方法采用乳化溶剂挥发法制备N-琥珀酰壳聚糖纳米粒;以包封率、载药量及粒径为指标,采用正交设计法对处方进行优化;考察其理化特征及体外释药行为。结果纳米粒包封率及载药量分别为62.36%和18.98%,平均粒径及zeta电位分别为(206.6±64.7)nm和(-27.2±0.2)mV;1 h药物释放达到45%,随后药物的释药行为是一个缓释过程。结论作者采用乳化溶剂挥发法成功制得N-琥珀酰壳聚糖纳米粒。该方法制得纳米粒包封率较高,制备工艺简单。  相似文献   

7.
醋酸地塞米松脂质纳米粒的优化处方及制备工艺   总被引:1,自引:0,他引:1  
目的:制备一种具有较高载药量,避免药物突释,达到缓释的新型醋酸地塞米松脂质纳米粒.方法:利用薄膜-超声法,使用卵磷脂和大豆油作为载体材料,制备醋酸地塞米松脂质纳米粒.以纳米粒的粒径、Zeta电位、载药量和包封率作为考察指标,对有机溶剂的种类、投药量、载体材料投料比、表面活性剂种类、表面活性剂用量和超声时间进行筛选,并进行体外释放研究.结果:最终确定最优处方及制备工艺为醋酸地塞米松15 mg,大豆油100 mg,卵磷脂100mg,二氯甲烷20 mL,4%的聚山梨酯80和4%的泊洛沙姆188各10 mL,超声时间5 min.结论:该处方制备的纳米粒不仅可提高醋酸地塞米松的载药量和包封率,且可避免药物的突释现象,为其纳米新剂型的制备提供了新方法.  相似文献   

8.
半乳糖化阿霉素白蛋白纳米粒的制备及其质量评价   总被引:3,自引:0,他引:3  
目的:制备半乳糖化阿霉素白蛋白纳米粒,并考察了其形态、粒径、载药量、包封率和体外释药特性.方法:采用相分离法制备阿霉素白蛋白纳米粒,并在其表面偶联半乳糖苷,使之成为半乳糖化白蛋白纳米粒.激光扫描电子显微镜观察纳米粒的形态,马尔文激光粒度仪测定其粒径分布.采用紫外分光光度法测定纳米粒的载药量和包封率,并初步研究其体外释药特性.结果:电镜结果显示阿霉素纳米粒呈类球型,平均粒径为316.3 nm,纳米粒载药量为3.12%,包封率达91.82%,48 h体外累积释药率为55.71%.结论:本方法制备阿霉素纳米粒工艺简单且包封率较高.体外释药结果显示半乳糖化阿霉素白蛋白纳米粒具有明显的缓释作用.  相似文献   

9.
摘要目的制备盐酸表柔比星 聚乳酸 羟基乙酸(PLGA)共聚物纳米粒,对其进行质量评价。方法采用乳化 溶剂挥发法制备盐酸表柔比星纳米粒;对主要处方因素如PLGA用量、外水相中聚山梨酯 80用量、泊洛沙姆188和聚山梨酯 80比例进行正交设计,以药物的包封率、载药量和药物利用率等为考察指标。结果采用优化后处方制得的纳米粒药物包封率为(32.6±1.2)%,载药量为(7.2±0.5)%,药物利用率为(51.6±3.4)%,纳米粒平均粒径166.6 nm,药物可持续160 h释放。结论该方法制备盐酸表柔比星纳米粒工艺简单,无需使用聚乙烯醇,药物释放缓慢。  相似文献   

10.
莪术油固体脂质纳米粒的制备   总被引:6,自引:2,他引:4  
目的研究影响莪术油固体脂质纳米粒制备的主要因素。方法采用高压均质法制备莪术油固体脂质纳米粒混悬液,以单因素考察和正交设计法筛选出比较理想的处方和工艺,并考察其形态、粒径、载药量及包封率。结果所制得的固体脂质纳米粒为圆整的类球形实体粒子,表面光滑,平均粒径为80.3nm,载药量为11.82%,包封率为81.75%。结论高压均质法可用于莪术油类液体药物固体脂质纳米粒的制备。  相似文献   

11.
目的:研究一种制备粒径均一可控的载蛋白缓释微球的新工艺,探究微球粒径、载体材料、形态结构与微球载药释药性能的关系。方法:以牛血清白蛋白(BSA)为模型药物,PLGA 和PEG-PLGA作为载体材料,采用SPG膜乳化法,通过调整不同孔径(3,5,7,12 μm)的SPG膜制备不同粒径的微球。考察微球粒径、包封率、释放行为、表面/内部形态等性质,并对微球微观结构相关的参数如孔径、平面孔隙率等进行定量分析。结果:微球的粒径与SPG膜孔径呈正相关关系,且相关系数>0.9。随着微球粒径的增大,载药量和包封率也呈现增大的趋势,突释减轻。PLGA和PEG-PLGA微球的内部结构随微球粒径增加的变化差异较大。结论:获得较为满意的制备载蛋白微球的新工艺,微球形态圆整,粒径均一可控。  相似文献   

12.
目的采用超声分散法制备吡喹酮固体脂质纳米粒,并考察制备过程中的主要影响因素。方法首先通过试验确定制备工艺参数,然后考察各处方因素对粒径大小和稳定性的影响,最后以包封率为评价指标,采用正交实验设计法确定最优处方。结果透射电镜测得纳米粒为类圆球状,粒径分布较均匀。动态光散射法测得样品的粒径为(100±21)nm,包封率为(79.3±0.69)%,平均zeta电位值为-66.3 mV。结论以山嵛酸甘油酯和乙酸丁酯为脂质材料,豆磷脂、泊洛沙姆188和硬脂酸钠为复配乳化剂,采用超声分散法可以简便、快速制得吡喹酮固体脂质纳米粒。  相似文献   

13.
多西他赛Pluronic F127聚合物胶束的制备与表征   总被引:1,自引:0,他引:1  
目的制备多西他赛(DTX)的F127聚合物胶束,对其药剂学特征进行评价。方法薄膜分散法制备胶束,并在单因素考察的基础上,以正交试验优化处方;透射电镜观察胶束形态;粒度分布测定仪测定其粒径、粒度分布;离心过滤法测定胶束的包封率和载药量;以DTX注射液作对照,采用动态膜透析法考察载药胶束的体外释药情况。结果薄膜分散法制备的胶束呈球形或类球形,平均粒径为(30.2±2.56)nm,平均包封率为(86.66±2.46)%,平均载药量为(0.42±0.01)%;体外释放实验结果表明该胶束具有一定的缓释能力。结论该胶束制备工艺简单,成型好,包封率高,具有一定的缓释能力。  相似文献   

14.
目的 制备载羟基喜树碱(hydroxycamptothecin,HCPT)还原响应mPEG-S-S-C18纳米粒,采用星点设计-效应面法筛选优化制备工艺。方法 采用乳化-溶剂挥发法制备HCPT/mPEG-S-S-C18纳米粒,应用单因素法考察投药量、水相/油相体积比、超声功率以及超声时间对载药纳米粒包封率和载药量的影响。在此基础上,以包封率和载药量作为评价指标,采用Design-Expert V8.0.6软件进行星点设计,优化载药纳米粒的制备工艺。结果 优化获得的HCPT/mPEG-S-S-C18纳米粒制备工艺投药量为1.0 mg,水相/油相体积比为4.56∶1,超声功率为562.5 W。该工艺制备的载药纳米粒包封率为(58.14±1.04)%,载药量为(3.46±0.22)%,平均粒径为(322.9±9.52) nm,多分散性指数为0.195±0.05,Zeta电位为(-17.5±2.11) mV。结论 乳化-溶剂挥发法适用于制备HCPT/mPEG-S-S-C18纳米粒,星点设计-效应面法可优化获得载药纳米粒的最佳制备工艺,所得的载药纳米粒包封率和载药量较高,所建立的数学模型预测性良好。  相似文献   

15.
耿叶慧  杨丽  张瑜  游劲松 《中国药房》2007,18(28):2197-2199
目的:制备吡喹酮固体脂质纳米粒(PZQ-SLN),并考察其理化性质。方法:以山嵛酸甘油酯和乙酸丁酯为脂质材料,超声分散法制备PZQ-SLN,透射电镜观察纳米粒形态,测定其粒径、Zeta电位和药物包封率,并进行体外释放试验及考察样品的稳定性。结果:所得脂质纳米粒为类圆球状,粒径分布较均匀。样品粒径为(100±21)nm,包封率为(79.3±0.69)%,平均Zeta电位值为—66.3mV。药物体外释放符合Weibull方程。4℃放置3mo后粒径、包封率和Zeta电位均无明显变化。结论:制备的PZQ-SLN理化性质较为理想,能使药物缓慢释放。4℃条件下贮存比较稳定。  相似文献   

16.
目的 制备合适尺寸的负载药物的纳米制剂,通过表面修饰,获取一种具有缓控释性的脑组织药物递送系统。方法 琥珀酸胆甾醇酯(CHS)与普鲁兰多糖经酯化反应形成疏水改性普鲁兰多糖(CHP)。CHP再通过透析法负载长春新碱(VCR)及通过乳化作用对聚山梨酯80(PS-80)进行表面修饰,得到VCR-CHP-PS纳米粒子。利用傅立叶红外光谱仪(FTIR)、核磁共振氢谱仪(1H-NMR)对聚合物进行表征,动态光散射仪表征纳米粒子的粒径及电位。透射电镜观测CHP形态,并用等温滴定量热法测定载药纳米粒子VCR-CHP对PS-80的吸附特性。结果 FTIR和1H-NMR证明CHS和CHP已成功合成。VCR-CHP-PS纳米粒子的平均粒径为414.2 nm,平均PDI为0.325,平均Zeta电位约为-19.5 mV。PS-80在CHP纳米粒子上的覆盖率为(149±43.5)%。VCR-CHP纳米粒子中VCR的载药量约为5.36%,包封率约为61.14%,72 h释放量约为61.43%。结论 疏水改性普鲁兰多糖纳米制剂具有较好的载药量和包封率及一定的缓释功能,有望成为脑靶向纳米药物载体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号