首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
本文综述了微透析取样技术在中药体内分析中的应用,介绍微透析取样技术的原理、组成、探针类型、特点,重点阐述了微透析取样技术在测定脑、血液、皮肤等组织器官中中药有效成分浓度的应用实例。表明微透析取样技术在中药药效研究中具有广阔的前景。  相似文献   

2.
微透析技术在药物靶组织分布和代谢研究中的应用   总被引:2,自引:0,他引:2  
张丽艳  李范珠 《中国新药杂志》2006,15(24):2103-2106,2146
微透析技术是一项新兴的在体研究技术,近年来已广泛应用于药物在靶组织分布和代谢研究,对于阐明药物体内过程、疗效和安全性有重要意义,为新药研发与临床合理用药提供科学依据。现通过检索分析相关文献,就微透析技术的概况、微透析探针、透析液的分析及微透析技术在药物靶组织分布和代谢研究中的应用作一综述。  相似文献   

3.
本文综述了近年来国外有关微透析取样技术在药代动力学中的应用,介绍了微透析取样技术的原理、组成以及微透析探针的类型,重点介绍了在体微透析取样技术在动物和人药代动力学中的应用。表明微透析取样技术在药代动力学中的应用具有广阔的前景。  相似文献   

4.
目的综述微透析与液相色谱-质谱联用技术在药物体内化学成分分析中的研究进展。方法参阅近几年国内外相关文献,对微透析与液相色谱-质谱联用技术在药物体内内源性物质及外源性物质中的应用进行归纳与总结。结果与结论微透析与液相色谱-质谱联用作为一种新型的分析技术,具有快速简便、干扰少、前处理简单等优点。此项技术在体内药物分析中得到了迅速推广和应用,特别在药代动力学研究中显示出其独特的优势,具有十分广阔的应用前景  相似文献   

5.
微透析技术具有连续动态微创取样优势,能实时在线研究正常生理和肿瘤病理情况下肿瘤药物在体内,尤其是肿瘤组织局部的分布、代谢和消除,利用PK/PD参数模型设计个体化给药方案,预防和减少肿瘤药物的毒性反应。同时,微透析技术还可以应用于肿瘤细胞外间质微环境中生化物质的监测以及肿瘤药物局部给药治疗,是肿瘤药物研究的重要技术手段。本文对近年来微透析在肿瘤药物研究中的应用进展进行检索和归纳,为微透析技术在取样、监测以及治疗领域的进一步研究应用提供参考。  相似文献   

6.
微透析技术在体内药物分析中的应用   总被引:6,自引:0,他引:6  
严方  丁黎  赵陆华 《药学进展》2004,28(9):409-412
论述微透析技术在体内药物分析中的应用研究,着重介绍微透析系统的基本结构与操作步骤、微透析技术用于定量分析及影响回收率的因素以及微透析技术与其他技术的联用。  相似文献   

7.
脑微透析是一种微创取样技术,具有多位点、实时取样和可在线等优点,在脑部药物监测中越来越受到关注。脑微透析技术为脑部药物浓度的监测提供了一种有效的新途径,可为新药研发与临床合理用药提供科学依据,在脑部给药系统研究中,特别是药动学及药效学研究中优势显著,具有很好的应用前景。本文综述了有关脑部微透析技术的特点及发展,介绍了脑微透析技术在药物监测研究中的进展,分别归纳了微透析技术在实验动物和临床患者中的应用情况。  相似文献   

8.
目的 介绍微透析技术在药物-蛋白结合研究中的应用。方法 通过查阅近年来国内外相关文献,概述微透析技术的基本原理、特点、探针及影响探针相对回收率的主要因素,并重点介绍其在药物-蛋白结合研究中的应用。结果与结论 与平衡透析法、超滤法相比,微透析技术是一项新兴的在体或离体取样技术,在药物-蛋白结合研究中具有显著的优越性和广阔的应用前景。  相似文献   

9.
目的介绍微透析技术在药物-蛋白结合研究中的应用。方法通过查阅近年来国内外相关文献,概述微透析技术的基本原理、特点、探针及影响探针相对回收率的主要因素,并重点介绍其在药物-蛋白结合研究中的应用。结果与结论与平衡透析法、超滤法相比,微透析技术是一项新兴的在体或离体取样技术,在药物-蛋白结合研究中具有显著的优越性和广阔的应用前景。  相似文献   

10.
微透析技术在药物代谢和药代动力学研究中的应用   总被引:7,自引:0,他引:7  
本文介绍了近年来有关微透析技术在药物代谢和药动学研究领域中应用的现状入已取得重大进展。微透析技术除应用于动物模型中的研究外,在人体中的研究特别是临床应用方面亦在发展中,该项技术在药物代谢和药代动力学研究领域中有广阔应用前景,但微透析探针校正和对微透析取样获得的少量样品的分析方法是仍需要深入研究的问题。  相似文献   

11.
Microdialysis has been developed during the last 25 years by several authors primarily to study brain function and changes in levels of endogenous compounds such as neurotransmitters or metabolites in different laboratory animals. However, in the last ten years microdialysis sampling has been introduced as a versatile technique in the clinical setting. Although, microdialysis sampling has been extensively used for metabolic monitoring in patients, it was also employed for the study of distribution of different therapeutic agents especially anti-infective and antineoplasic drugs. In addition, clinical effect of drugs in patients could be also determined by means of microdialysis. So, this article reviewed the vast applications of the microdialysis technique for the study of pharmacokinetic and pharmacodynamic properties of drugs in the clinical setting.  相似文献   

12.
Zhou Q  Gallo JM 《The AAPS journal》2005,7(3):E659-E667
In vivo microdialysis technique has become one of the major tools to sample endogenous and exogenous substances in extracellular spaces. As a well-validated sampling technique, microdialysis has been frequently employed for quantifying drug disposition at the desired target in both preclinical and clinical settings. This review addresses general methodological considerations critical to performing microdialysis in tumors, highlights selected preclinical and clinical studies that characterized drug disposition in tumors by the use of microdialysis, and illustrates the potential application of microdialysis in the assessment of tumor response to cancer treatment.  相似文献   

13.
Microdialysis in peripheral tissues   总被引:7,自引:0,他引:7  
The objective of this review is to survey the recent literature regarding the applications of microdialysis in pharmacokinetic studies and facilitating many other studies in peripheral tissues such as muscle, subcutaneous adipose tissue, heart, lung, etc. It has been reported extensively that microdialysis is a useful technique for monitoring free concentrations of compounds in extracellular fluid (ECF), and it is gaining popularity in pharmacokinetic and pharmacodynamic studies, both in experimental animals and humans. The first part of this review discusses the use of microdialysis technique for ECF sampling in peripheral tissues in animal studies. The second part of the review describes the use of microdialysis for ECF sampling in peripheral tissues in human studies. Microdialysis has been applied extensively to measure both endogenous and exogenous compounds in ECF. Of particular benefit is the fact that microdialysis measures the unbound concentrations in the peripheral tissue fluid which have been shown to be responsible for the pharmacological effects. With the increasing number of applications of microdialysis, it is obvious that this method will have an important place in studying drug pharmacokinetics and pharmacodynamics.  相似文献   

14.
微透析技术是近年来发展起来的动态生物取样技术,具有"活体、微创、实时、高效"等特点,其与现代分析技术联用,实现了连续取样和动态测定,可进行微量的定性、定量分析。微透析探针回收率的准确校正,是测定生物体中待测组分确切浓度的关键步骤,可提高大分子、难溶性物质的回收率,使微透析的应用更为广泛。本文对微透析探针回收率的影响因素、校正方法以及近年来提高回收率所取得的进展做一综述。  相似文献   

15.
Two similar automated analytical systems using liquid chromatography (LC) and microdialysis as an on-line sampling technique were applied to studies of enzyme kinetics. 2′,3′,5′-Triacetyl-6-azauridine (azaribine) with porcine liver esterase (PLE) and N-acetylphenylalanyl-3,5-diiodotyrosine (AcFY') with pepsin were used as model compounds. The microdialysis sampling technique permitted the rapid separation of low molecular weight analytes from macromolecules, thus simultaneously achieving clean-up of the samples and quenching of the reaction. The combination of rapid LC analysis and microdialysis sampling provided selectivity and automation. The systems are rugged and give reproducible results in agreement with those from manual sampling methods.  相似文献   

16.
Application of microdialysis to characterize drug disposition in tumors   总被引:1,自引:0,他引:1  
Microdialysis is an in vivo sampling technique that was initially developed to measure endogenous substances in the field of neurotransmitter research. In the past decade, microdialysis has been increasingly applied to study the pharmacokinetics and drug metabolism in the blood and various tissues of both animals and humans. This paper describes the general aspects of this in vivo sampling technique followed by the survey of the recent papers regarding the application of microdialysis to characterize anticancer drug disposition in solid tumors. It can be concluded that microdialysis is a very suitable method to obtain drug concentration-time profiles in the interstitial fluid of solid tumors as well as of other variety of tissues.  相似文献   

17.
F Campos  S Rellán  R Duran  A Gago  L F Faro  M Alfonso 《Toxicon》2008,52(7):817-823
In vivo microdialysis is a versatile sampling technique commonly employed to observe changes in neurotransmitters levels that occur in response to different treatments, being these treatments administered through a microdialysis probe implanted into a specific brain region in living animals. In previous works we have used this technique to study the effects of the drug anatoxin-a, a nicotinic acetylcholine receptor agonist, on dopamine release in striatum. The aim of the present study was to assess the recovery of anatoxin-a through the microdialysis probe. This information allows knowing the exact amount of the drug crossing the microdialysis membrane, acting on extracellular tissue. High Performance Liquid Chromatography (HPLC) with Fluorescence Detection (FLD) has been used for the analysis of anatoxin-a. We observed that the recovery of anatoxin-a was about 0.5%. Under our experimental conditions, the results suggest that anatoxin-a can be used as an important tool in the study of neuronal nicotinic receptors by in vivo microdialysis technique and also show a reliable estimation of the anatoxin-a recovery through the microdialysis probe under both in vivo and in vitro conditions.  相似文献   

18.
19.
Microdialysis Sampling for the Investigation of Dermal Drug Transport   总被引:2,自引:0,他引:2  
Microdialysis perfusion in vivo has the potential to be a powerful sampling technique in dermal and transdermal drug delivery studies. Characterization of a commercially available microdialysis probe in vitro considering relevant physiological parameters is a vital first step in the evaluation of microdialysis as a dermal sampling technique. In previous microdialysis studies, analyte concentration and neutrality have been implicated in altering microdialysis recovery. The recovery of a model compound 5-fluorouracil (5-FU) was investigated at several pH values and donor concentrations. The relative recovery of 5-FU by the microdialysis probe was affected by pH but not by donor concentration. To confirm further that the changing concentration and pH profile presented by the flux of 5-FU was not significantly altering microdialysis recovery, an experiment comparing direct and microdialysis sampling of a Franz diffusion cell receptor compartment was performed. Although the 5-FU concentration (0-686 ng/ml) and pH (7.40-7.24) changed substantially, the recovery of 5-FU was not adversely affected. To demonstrate the feasibility of dermal microdialysis, the flux of a commercial preparation of 5-fluorouracil was monitored utilizing a microdialysis probe implanted in excised rat skin in vitro. The results from the dermally implanted probe demonstrate the potential of the technique while establishing the limitations of the current microdialysis system.  相似文献   

20.
Application of Microdialysis in Pharmacokinetic Studies   总被引:14,自引:0,他引:14  
The objective of this review is to survey the recent literature regarding the various applications of microdialysis in pharmacokinetics. Microdialysis is a relatively new technique for sampling tissue extracellular fluid that is gaining popularity in pharmacokinetic and pharmacodynamic studies, both in experimental animals and humans. The first part of this review discusses various aspects of the technique with regard to its use in pharmacokinetic studies, such as: quantitation of the microdialysis probe relative recovery, interfacing the sampling technique with analytical instrumentation, and consideration of repeated procedures using the microdialysis probe. The remainder of the review is devoted to a survey of the recent literature concerning pharmacokinetic studies that apply the microdialysis sampling technique. While the majority of the pharmacokinetic studies that have utilized microdialysis have been done in the central nervous system, a growing number of applications are being found in a variety of peripheral tissue types, e.g. skin, muscle, adipose, eye, lung, liver, and blood, and these are considered as well. Given the rising interest in this technique, and the ongoing attempts to adapt it to pharmacokinetic studies, it is clear that microdialysis sampling will have an important place in studying drug disposition and metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号