首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Middle cerebral arterial blood velocity (MCAv) response to spontaneous and manipulated changes of arterial blood pressure (ABP) was studied in eight subjects using a linear autoregressive with exogenous input (ARX) model. ABP and MCAv were measured non-invasively by photoplethysmograph and transcranial Doppler ultrasound, respectively. Data were recorded at rest (spontaneous changes in ABP) and during thigh cuff (step-wise changes) and lower body negative pressure (sinusoidal changes of 1/12 Hz) tests in both normocapnia and hypercapnia (5% CO2). Since autoregulation is modulated by CO2, respiratory CO2 was simultaneously monitored to allow comparison of cerebral autoregulation status with different CO2 levels. ABP and MCAv were fitted by ARX models and dynamic cerebral autoregulation was estimated by analysing both the step responses and phase shift at the 1/12 Hz of the corresponding ARX models. The ARX model consistently modelled the phase lead of MCAv to ABP and it showed that the phase shift at 1/12 Hz of ARX model is consistent with the real phase shift of the data (p=0.59). Strong linear relationships between pCO2 and gradient of the step response (r=-0.58, p<0.0001) and between pCO2 and phase shift (r=-0.76, p<0.0001) were observed, which suggests that cerebral autoregulation can be assessed by step response or phase shift analysis of the ARX model fitted to ABP and MCAv data with spontaneous changes.  相似文献   

2.
The dynamic relationship between spontaneous fluctuations of arterial blood pressure (ABP) and corresponding changes in crebral blood flow velocity (CBFV) is studied in a population of 83 neonates. Static and dynamic methods are used to identify two subgroups showing either normal (group A, n=23) or impaired (group B, n=21) cerebral autoregulation. An FFT algorithm is used to estimate the coherence and transfer function between CBFV and ABP. The significance of the linear dependence between these two variables in demonstrated by mean values of squared coherence >0.50 for both groups in the frequency range 0.02–0.50 Hz. However, group A has significanlty smaller coherences than group B in the frequency ranges 0.02–0.10 Hz and 0.33–0.49 Hz. The phase response of group A is also significantly more positive than that of group B, with slopes of 9.3±1.05 and 1.80±1.2 rad Hz−1, respectively. The amplitude frequency response is also significantly smaller for group A in relation to group B for the frequency range 0.25–0.43 Hz. These results suggest that transfer function analysis may be able to identify different components of cerebral autoregulation and also provide a deeper understanding of recent findings by other investigators.  相似文献   

3.
In the study, a new myocardial infarction (MI) estimation method was developed for estimating Ml in the three-dimensional myocardium by means of a heart-model-based inverse approach. The site and size of Ml are estimated from body surface electrocardiograms by minimising multiple objective functions of the measured body surface potential maps (BSPMs) and the heart-model-generated BSPMs. Computer simulations were conducted to evaluate the performance of the developed method, using a single-site Ml and dual-site Ml protocols. The simulation results show that, for the single-site Ml, the averaged spatial distance (SD) between the weighting centres of the ‘true’ and estimated Mls, and the averaged relative error (RE) between the numbers of the ‘true’ and estimated infarcted units are 3.0±0.6/3.6±0.6 mm and 0.11±0.02/0.14±0.02, respectively, when 5μV/10μV Gaussian white noise was added to the body surface potentials. For the dual-site Ml, the averaged SD between the weighting centres of the ‘true’ and estimated Mls, and the averaged RE between the numbers of the ‘trus’ and estimated infarcted units are 3.8±0.7/3.9±0.7 mm and 0.12±0.02/0.14±0.03, respectively, when 5μV/10μV Gaussian white noise was added to the body surface potentials. The simulation results suggest the feasibility of applying the heart-model-based imaging approach to the estimation of myocardial infarction from body surface potentials.  相似文献   

4.
Linearity and non-linearity in cerebral hemodynamics   总被引:4,自引:0,他引:4  
BACKGROUND: Transcranial Doppler ultrasound has been extensively used to study cerebral hemodynamics, and yet the basic characteristics of the input/output system of blood pressure/velocity are little known. We examine whether this system can best be considered linear or non-linear. METHODS: We assessed the adequacy of linear modeling in four ways: (1) Known properties of cerebral blood flow were reviewed and analyzed from a systems standpoint; (2) 1100 ARX & OE model types were tested with data from 29 normal subjects, with and without lowpass filtering; (3) time-frequency analysis was used to identify nonstationary behavior and markers of non-linearity (such as bifurcations, chirps, and intermittent autoregulatory impairment) in the same data sets; (4) simple computer models of autoregulation incorporating time delays and non-linear elements were tested for production of spontaneous oscillations. RESULTS: (1) Several aspects of cerebral hemodynamics are poorly described by linear models, (2) the ARX & OE models performed poorly, (3) time-frequency analysis showed non-linear and nonstationary behavior, (4) the computer models produced spontaneous oscillations similar to those observed in humans. CONCLUSIONS: There is strong evidence that the blood pressure/velocity system is non-linear.  相似文献   

5.
Continuous assessment of CA is desirable in a number of clinical conditions, where cerebral hemodynamics may change within relatively short periods. In this work, we propose a novel method that can improve temporal resolution when assessing the pressure-to-flow dynamics in the presence of rapid changes in arterial CO2. A time-varying multivariate model is proposed to adaptively suppress the instantaneous effect of CO2 on CBFV by the recursive least square (RLS) method. Autoregulation is then quantified from the phase difference (PD) between arterial blood pressure (ABP) and CBFV by calculating the instantaneous PD between the signals using the Hilbert transform (HT). A Gaussian filter is used prior to HT in order to optimize the temporal and frequency resolution and show the rapid dynamics of cerebral autoregulation. In 13 healthy adult volunteers, rapid changes of arterial CO2 were induced by rebreathing expired air, while simultaneously and continuously recording ABP, CBFV and end-tidal CO2 (ETCO2). Both simulation and physiological studies show that the proposed method can reduce the transient distortion of the instantaneous phase dynamics caused by the effect of CO2 and is faster than our previous method in tracking time-varying autoregulation. The normalized mean square error (NMSE) of the predicted CBFV can be reduced significantly by 38.7% and 37.7% (p < 0.001) without and with the Gaussian filter applied, respectively, when compared with the previous univariate model. These findings suggest that the proposed method is suitable to track rapid dynamics of cerebral autoregulation despite the influence of confounding covariates.  相似文献   

6.
A time lagged recurrent neural network (TLRN) was implemented to model the dynamic relationship between arterial blood pressure (ABP) and cerebral blood flow velocity (CBFV) and its performance was compared to classical linear model such as transfer function analysis, Aaslid's dynamic autoregulation model, and the Wiener-Laguerre moving average filter. A simple linear regression was also tested as a naive estimator. In 16 normal subjects, CBFV was continuously recorded with Doppler ultrasound and ABP with the Finapres device during six repeated thigh cuff manoeuvres. Using mean beat-to-beat values of ABP as input and CBFV as output, the performance of each method was assessed by the model's predicted velocity correlation coefficient and normalized mean square error (MSE). Cross-validation was performed using three thigh cuff manoeuvres for the training data set and the other three for the validation set. The four methods studied performed significantly better than the zero-order naive estimator. The TLRN performed better than transfer function analysis, but was not significantly different from the time-domain techniques, despite showing the minimum predictive MSE. CBFV step responses could be extracted from the TLRN showing the presence of non-linear behaviour both in terms of amplitude and directionality.  相似文献   

7.
Arterial blood pressure (ABP) shows polyphasic changes during the Mueller manoeuvre (voluntary negative intrathoracic pressure). The aim of the present study was to investigate (1) whether these changes could be applied to detect impaired dynamic cerebral autoregulation (dCA) in carotid stenosis and (2) whether the degree of indicated impairment correlates with transfer function phase as another current measure for dCA (deep breathing method) and CO2-reactivity. We examined 13 patients with severe unilateral carotid artery stenosis and 16 age-matched controls during 15-s Mueller manoeuvres (MM) at -30 mmHg using bilateral transcranial Doppler sonography and non-invasive ABP recordings (Finapres, 2300, Ohmeda, Englewood, CO, USA). After an initial biphasic oscillation, cerebral blood flow velocity (CBFV) and ABP decreased to below baseline. CBFV reincreased in controls and on contralateral sides in patients 6.0 s (3.8-9.5 s, median and range) after the onset of the decrease, despite a further fall in ABP. CBFV over the affected side revealed a significantly delayed reincrease (8.0 (5.6-10.3) s; P<0.01) combined with a relatively flat and inertial amplitude behaviour. An applied autoregulation index derived from the MM (mROR), phase shift and CO2-reactivity were severely reduced on the affected side in patients (P<0.01). Reduction of the mROR correlated significantly with reduction of phase shift (r=0.69; P=0.002) and CO2-reactivity (r=0.78; P=0.002). In conclusion, the different cerebral haemodynamic pattern during the MM in patients is likely to reflect impaired dCA. The degree of indicated impairment correlates with that of transfer function phase and CO2-reactivity. Therefore, the MM represents a convenient method for grading of compromised cerebral haemodynamics in patients with carotid artery stenosis.  相似文献   

8.
The critical closing pressure of the cerebral circulation   总被引:6,自引:0,他引:6  
The critical closing pressure (CrCP) of the cerebral circulation indicates the value of arterial blood pressure (ABP) at which cerebral blood flow (CBF) approaches zero. Measurements in animals and in humans, have shown that the CrCP is significantly greater than zero. A simple mathematical model, incorporating the effects of arterial elasticity and active wall tension, shows that CrCP can be influenced by several structural and physiological parameters, notably intracranial pressure (ICP) and active wall tension. Due to the non-linear shape of the complete ABP-CBF curve, most methods proposed for estimation of CrCP can only represent the linear range of the pressure-flow (or velocity) relationship. As a consequence, only estimates of apparent CrCP can be obtained, and these tend to be significantly higher than the true CrCP. Estimates of apparent CrCP have been shown to be influenced by arterial PCO2, ICP, cerebral autoregulation, intra-thoracic pressure, and mean ABP. There is a lack of investigation, under well-controlled conditions, to assess whether CrCP is altered in disease states. Studies of the cerebral circulation need to take CrCP into account, to obtain more accurate estimates of cerebrovascular resistance changes, and to reflect the correct dynamic relationship between instantaneous ABP and CBF.  相似文献   

9.
Migraine affects the autonomous nervous system and a recent investigation has also proposed a severe disturbance of dynamic cerebral blood flow regulation in the middle cerebral artery during spontaneous blood pressure oscillations. This study investigates whether dynamic cerebral autoregulation is impaired in persons with migraine among a normal cohort. Out of 94 adults studied to establish normal values for dynamic autoregulation, 19 suffered from migraine according to IHS criteria (10 of them with aura). Transcranial Doppler sonography and fingerplethysmography were used to determine dynamic autoregulation of both middle cerebral arteries following spontaneous low frequency (0.06–0.12 Hz) blood pressure fluctuations (phase and gain of transfer function, correlation coefficient indices Dx and Mx). No significant differences were found for the low frequency variability of blood pressure (power spectral density) and various indices of dynamic cerebral autoregulation between persons with and without migraine. Moreover, no differences were observed between persons with migraine, with and without aura. This study based on a normal cohort does not support the presence of generally impaired cerebral autoregulation dynamics in persons with migraine. Future studies should focus on posterior circulation and particular cerebellar autoregulation.  相似文献   

10.
Integration of various brain signals can be used to determine cerebral autoregulation in neurocritical care patients to guide clinical management and to predict outcome. In this review, we will discuss current methodology of multimodal brain monitoring focusing on secondary ‘reactivity indices’ derived from various brain signals which are based on a ‘moving correlation coefficient’. This algorithm was developed in order to analyze in a time dependent manner the degree of correlation between two factors within a time series where the number of paired observations is large. Of the various primary neuromonitoring sources which can be used to calculate reactivity indices, we will focus in this review on indices based on transcranial Doppler (TCD), intracranial pressure (ICP), brain tissue oxygenation (PbtO2) and near infrared spectroscopy (NIRS). Furthermore, we will demonstrate how reactivity indices can show transient changes of cerebral autoregulation and can be used to optimize management of arterial blood pressure (ABP) and cerebral perfusion pressure (CPP).  相似文献   

11.
We examined the diameter responses of isolated and pressurized posterior cerebral artery branches to various static and dynamic pressure alterations. These vessels, dissected from an anatomically identifiable location in the rat brain, developed tone when placed in a normal calcium physiological salt solution (1.6 mM Ca-PSS). Following a series of transmural pressure steps (Δp) of 25 or 50 mm Hg completed in 1–2 s and made every 5 min, they attained additional tone resulting in a mean luminal diameter of 139 μm at 100 mm Hg which was 35% less than their relaxed size measured in 1 mM EGTA-PSS. Continuous measurements of wall thickness and lumen diameter were obtained using a video electronic system in 1–2 mm long arterial segments, and autoregulatory gain factors calculated. Myogenic responses were obtained from each of 6 vessels taken from 6 WKY rats. Diameters following the step pressure changes were usually stable within 2–4 min. The data defined a myogenic regulatory pressure range from 49–145 mm Hg. Gain values averaged about 17% of that necessary for these arteries to maintain perfect flow autoregulation. Our results for myogenicity are comparable with the pressure range for blood flow autoregulation reported by others for the rat. We conclude that myogenic mechanisms, at least in this size artery, are partly responsible for flow autoregulation, and that they are supplemented by metabolic mechanisms operative in the intact rat brain. Research supported by grant HL 17335 from the NHLBI.  相似文献   

12.
This paper revisits a concept combining the evolution, ontogeny and histophysiology of the cerebral cortex, presented, in a quest to explain cognition and behavior, by the neurobiologist Christfried Jakob (1866–1956) at the Second Annual Meeting of the International Society for Medical Psychology and Psychotherapy, organized by Oskar Vogt (1870–1959) in Munich in 1911. Jakob suggested a dual onto-phylogenetic origin and a ubiquitous cortical function, claiming that most receptive pathways end up in an ‘outer fundamental layer’, which derives from the rhinencephalic apparatus, whereas the ‘inner fundamental layer’ contains effector elements and derives from the striatum. With advancing evolution, the two fundamental layers become intermingled. By attributing a functional homogeneity to the cortex, Jakob contradicted the theories of Flechsig and Cajal on ‘association’ and ‘mnemonic’ areas. The merit of Jakob’s concept rests, a century later, with the current resurgence of biological research at the evolutionary–developmental interface and the broadening anticipated from the re-integration of these two fields, especially by adding a functional dimension to the morphological traits.  相似文献   

13.
Acute short-term changes in blood pressure (BP) and cardiac output (CO) affect cerebral blood flow (CBF) in healthy subjects. As yet, however, we do not know how spontaneous fluctuations in BP and CO influence cerebral circulation throughout 24 h. We performed simultaneous monitoring of BP, systemic haemodynamic parameters and blood flow velocity in the middle cerebral artery (MCAV) in seven healthy subjects during a 24-h period. Finger BP was recorded continuously during 24 h by Portapres and bilateral MCAV was measured by transcranial Doppler (TCD) during the first 15 min of every hour. The subjects remained supine during TCD recordings and during the night, otherwise they were seated upright in bed. Stroke volume (SV), CO and total peripheral resistance (TPR) were determined by Modelflow analysis. The 15 min mean value of each parameter was assumed to represent the mean of the corresponding hour. There were no significant differences between right vs. left, nor between mean daytime vs. night time MCAV. Intrasubject comparison of the twenty-four 15-min MCAV recordings showed marked variations (P < 0.001). Within each single 15-min recording period, however, MCAV was stable whereas BP showed significant short-term variations (P < 0.01). A day-night difference in BP was only observed when daytime BP was evaluated from recordings in the seated position (P < 0.02), not in supine recordings. Throughout 24 h, MCAV was associated with SV and CO (P < 0.001), to a lesser extent with mean arterial pressure (MAP; P < 0.005), not with heart rate (HR) or TPR. These results indicate that in healthy subjects MCAV remains stable when measured under constant supine conditions but shows significant variations throughout 24 h because of activity. Moreover, changes in SV and CO, and to a lesser extent BP variations, affect MCAV throughout 24 h.  相似文献   

14.
目的:研究高血压动脉硬化对脑血流自动调节类型的影响,提出脑血流自动调节下限测定的新方法。方法:经颅多普勒超声测定血流速度,同步记录血压,改变血压,绘制脑血流自动调节曲线,并进行分类和确定自动调节的上、下限。同时,自动调节下限也按照临界关闭压(CCP)的理论进行测定。结果:脑血流自动调节类型中,经典型和非经典型降血压中正常鼠为25%和75%,肾血管性高血压大鼠(RHR)为40.55%和54.45%;升血压中正常鼠为76.47%和23.53%,RHR全为经典型。CCP法检测到的自动调节下限正常鼠和RHR分别为(70.88±24.05)mmHg和(107.73±38.82)mmHg,与自动调节曲线测定的结果高度相关(r分别为0.79455和0.81643,P均<0.01),数值相近。结论:高血压动脉硬化除使脑血流自动调节范围上移外,其类型也发生改变;自动调节下限的测定,用TCD按照CCP理论进行,结果可靠,可代替常规方法。  相似文献   

15.
The aim of the present study was to examine the effect of cold water immersion (CWI) on sprint swimming performance in simulated competition conditions. Ten well-trained swimmers (5 males, 5 females; 19.0 ± 3.9 years) performed two 100-m swimming sprints (S1 and S2) interspersed with a 30-min passive recovery period, during which athletes were randomly assigned to 5 min of CWI (14°C) or an out-of-water control condition (CON 28°C). During tests, sprint times, heart rate (HR), pre- and post-race parasympathetic activity via HR variability (natural logarithm of the square root of the mean of the sum of the squares of differences between adjacent normal R–R intervals; Ln rMSSD) and blood lactate accumulation ([La]ac) and clearance ([La]cle) were recorded. Rates of perceived recovery (RPR) and exertion (RPE) were evaluated before and after each sprint. CWI was associated with a ‘likely’ decrease in swimming performance [1.8% (90% CI 0.2, 3.5)], as well as ‘likely’ lower peak HR [−1.9% (−3.6, −0.2)]. CWI was also associated with a ‘likely’ smaller decrease in Ln rMSSD after the first sprint [−16.7% (−30.9, −4.1)]. RPR was ‘likely’ better [+27.2% (−3.7, 68.0)] following CWI. ‘unclear’ effects were observed for [La]ac [+24.7% (−13.4, 79.5)], [La]cle [−7.6% (−24.2, 12.7)] or RPE [+2.0% (−12.3, 18.5)]. Following CWI, changes in sprint times were ‘largely’ correlated with changes in peak HR (r = 0.80). Despite a subjective perception of improved recovery following CWI, this recovery intervention resulted in slower swimming times in well-trained athletes swimming in simulated competition conditions.  相似文献   

16.
Autoregulation of cerebral blood flow is heterogeneous in several ways: regional, segmental, and temporal. We have found regional heterogeneity of the autoregulatory response during both acute reductions and increases in systemic arterial presure. Changes in blood flow are less in brain stem than in cerebrum during decreases and increases in cerebral perfusion pressure. Segmental heterogeneity of autoregulation has been demonstrated in two ways. Direct determination of segmental cerebral vascular resistance indicates that, while small cerebral vessels (<200 μm in diameter) make a major contribution to autoregulation during acute increases in pressure between 80 and 100 mm Hg, the role of large cerebral arteries (>200 μm) becomes increasingly important to the autoregulatory response at pressures above 100 mm Hg. Measurement of changes in diameter of pial vessels has shown that, during acute hypotension, autoregulation occurs predominantly in small resistance vessels (<100 μm). Finally, there is temporal heterogeneity of autoregulation. Sudden increases in arterial pressure produce transient increases in blood flow, which are not observed under steady-state conditions. In addition, the blood-brain barrier is more susceptible to hypertensive disruption after rapid, compared to step-wise, increases in arterial pressure. Thus, when investigating cerebral vascular autoregulation, regional, segmental, and temporal differences in the autoregulatory response must be taken into consideration.  相似文献   

17.
We have investigated the role of adenosine, a purine nucleoside and potent vasodilator of cerebral pial vessels, during both acute (0–60 sec) and sustained (2–5 min) changes in cerebral perfusion pressure. Brain adenosine concentrations are rapidly increased within 5 sec of the onset of systemic hypotension and parallel, in a temporal fashion, the changes in pial vessel diameter and alterations in cerebral vascular resistance. During sustained hypotension, brain levels of adenosine are increased even within the autoregulatory range. These data are constant with the hypothesis that adenosine is an important metabolic factor in cerebral autoregulation.  相似文献   

18.
Transcranial Doppler (TCD) ultrasonography is largely used today to achieve non-invasive assessment of cerebral autoregulation and cerebrovascular reactivity in neurosurgical patients. Recent experimental and clinical studies suggest that not only the pattern of mean velocity, but also velocity pulse amplitude alterations during changes in cerebral perfusion pressure (CPP) contain information on autoregulation status. The aim of this work is to investigate the relationship between cerebral autoregulation and TCD pulsatility by means of a comprehensive mathematical model of intracranial dynamics and cerebrovascular regulation. Simulation results, performed using different values of the most important clinical parameters of the model (autoregulation strength, cerebrospinal fluid (CSF) outflow resistance and intracranial elastance coefficient) show that velocity pulse amplitude increases with a reduction in CPP in patients with intact autoregulation, whereas changes in velocity pulsatility are modest in patients with weak autoregulation. Finally, velocity pulse amplitude decreases during a CPP reduction in patients with impaired autoregulation. Moreover, the relationship between the velocity pulse amplitude changes and autoregulation strength is almost linear in a wide range of CPP values, and is scarcely affected by changes in CSF circulation and intracranial elasticity. Starting from these results, we suggest a new quantitative index to assess autoregulation strength, i.e. G(aut)% = (s-b)/a, where G(aut)% is autoregulation strength (100% means intact autoregulation, 0% means impaired autoregulation), a approximately -0.03; b approximately 1.5 and s is the slope of the relationship ' percentage changes of velocity pulse amplitude to arterial pressure pulse amplitude vs. CPP changes'.  相似文献   

19.
Extra-cellular neuro-recording signals used for functional mapping in deep brain stimulation (DBS) surgery and invasive brain computer interfaces, may suffer from poor signal to noise ratio. Therefore, a reliable automatic noise estimate is essential to extract spikes from recordings. We show that current methods are biased toward overestimation of noise-levels with increasing neuronal activity or artifacts. An improved and novel method is proposed that is based on an estimate of the mode of the distribution of the signal envelope. Our method makes use of the inherent characteristics of the noise distribution. For band-limited Gaussian noise the envelope of the signal is known to follow the Rayleigh distribution. The location of the peak of this distribution provides a reliable noise-level estimate. It is demonstrated that this new ‘envelope’ method gives superior performance both on simulated data, and on actual micro-electrode recordings made during the implantation surgery of DBS electrodes for the treatment of Parkinson’s disease.  相似文献   

20.
Acute short‐term changes in blood pressure (BP) and cardiac output (CO) affect cerebral blood flow (CBF) in healthy subjects. As yet, however, we do not know how spontaneous fluctuations in BP and CO influence cerebral circulation throughout 24 h. We performed simultaneous monitoring of BP, systemic haemodynamic parameters and blood flow velocity in the middle cerebral artery (MCAV) in seven healthy subjects during a 24‐h period. Finger BP was recorded continuously during 24 h by Portapres and bilateral MCAV was measured by transcranial Doppler (TCD) during the first 15 min of every hour. The subjects remained supine during TCD recordings and during the night, otherwise they were seated upright in bed. Stroke volume (SV), CO and total peripheral resistance (TPR) were determined by Modelflow analysis. The 15 min mean value of each parameter was assumed to represent the mean of the corresponding hour. There were no significant differences between right vs. left, nor between mean daytime vs. night time MCAV. Intrasubject comparison of the twenty‐four 15‐min MCAV recordings showed marked variations (P < 0.001). Within each single 15‐min recording period, however, MCAV was stable whereas BP showed significant short‐term variations (P < 0.01). A day–night difference in BP was only observed when daytime BP was evaluated from recordings in the seated position (P < 0.02), not in supine recordings. Throughout 24 h, MCAV was associated with SV and CO (P < 0.001), to a lesser extent with mean arterial pressure (MAP; P < 0.005), not with heart rate (HR) or TPR. These results indicate that in healthy subjects MCAV remains stable when measured under constant supine conditions but shows significant variations throughout 24 h because of activity. Moreover, changes in SV and CO, and to a lesser extent BP variations, affect MCAV throughout 24 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号