首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
目的:利用蒙特卡罗方法分析透射平面上散射光子的物理性质以及非均匀模体厚度对散射核的影响,为基于电子射野影像设备(EPID)的在体剂量验证研究提供基础。方法:利用EGSnrc建立笔形束散射核模型,并模拟获得X射线穿过非均匀模体(水肺水/水骨水模体)以及相应等效厚度水模后30 cm处透射平面上的多种散射线能量注量分布,并分析水肺水/水骨水模体与其等效厚度水模体在散射线能量注量分布上的差异。结果:散射核中一阶康普顿散射线最大能量注量在1×10-4 MeV·cm-2数量级,当离轴距离为8~12 cm时下降至最大值的一半,而散射核中其它散射线能量注量最大值在1×10-5 MeV·cm-2数量级附近或以下。对于水肺水/水骨水模体,散射核能量注量相对偏差变化为±1.2%~±11.5%,且随模体非均匀层厚度增大而增大。结论:散射核中一阶康普顿散射线占比最大,同时也贡献了大部分能量注量相对偏差,在通过散射核来重建非均匀模体后EPID平面上的射线分布时,应着重考虑一阶康普顿散射线对重建结果的影响,并对其进行有效的修正。  相似文献   

2.
目的:探讨电子射野影像系统(EPID)用于调强放射治疗三维剂量验证的可行性。方法:分别使用Varian公司的Trilogy加速器自带的EPID及EDose软件和美国Sun Nuclear公司的Mapcheck剂量验证系统及配套模体对10例调强放射治疗的患者进行剂量验证,记录并比较分析两种系统的绝对剂量和相对剂量γ通过率的相关性。结果:采用γ(3%/3mm)标准时,相对剂量EPID和Mapcheck验证的γ通过率分别为(98.51%±1.10%)、(98.73%±0.69%);绝对剂量EPID和Mapcheck验证的γ通过率分别为(96.50%±3.33%)、(97.64%±1.51%),两者均无统计学意义(P0.05)。其它标准的γ通过率有统计学意义。结论:EPID可以作为调强三维剂量验证的工具,比Mapcheck更方便快捷。  相似文献   

3.
目的:探讨利用二维半导体阵列(Mapcheck)测量Varian动态楔形板二维平面剂量的方法。方法与材料:(1)在CMS XIO治疗计划系统(TPS)建立一个模体,在三维治疗计划系统上设置一定条件的射野计算并输出二维剂量平面分布图。(2)用标定后的Mapcheck逐一测量治疗计划系统给定的条件射野及楔形角,并用测量结果与TPS计算结果比较。(3)比较不同照射野及动态楔形角的水下深度5 cm的绝对剂量,并分析。结果:Mapcheck测量的二维平面剂量结果与TPS计算的结果通过率都在98%以上。Mapcheck测量与TPS计算水下深度5 cm剂量相差都在正负0.8%范围内。结论:利用Mapcheck测量动态楔形板的二维平面剂量的方法是可行的,测量结果准确,且精度较高,方便、快速。  相似文献   

4.
目的:介绍医用加速器常规光子射线的机器数据测量方法及剂量计算模型中基本参数的计算过程。以百分深度剂量与散射因子为基础数据,根据原散射线模型通过测量数据推导出原射线组织最大剂量比、散射最大剂量比、原射线在水中线性衰减系数、能量注量等,为进一步还原射野在水模体中的剂量分布提供方法与理论。方法:用Blue Phantom三维水箱在医科达Synergy加速器上测量6MV光子线的百分深度剂量、离轴比剂量、总散射因子、准直器散射因子,先从测量的百分深度剂量曲线中按照原散射模型剥离出原射线百分深度剂量,然后在Matlab软件中拟合处理测量的散射因子数据,外推出零野的模体散射因子,从而按照给定公式计算出组织最大剂量比、散射最大剂量比。按照离轴比剂量,利用平方反比规律推出最大开野在模体表面的能量注量。结果:计算出准直器散射因子、总散射因子的拟合公式,外推零野模体散射因子(s。)、根据原射线的百分深度剂量曲线计算出原射线在水中线性衰减系数,组织最大剂量比(TMR)、散射最大剂量比(SMR)、以及射野能量注量分布(Fluence Matrix)。结论:这些基本参数是剂量计算建模的关键,也是进一步研究各种剂量计算模型的基础。  相似文献   

5.
目的:比较PTW OCTAVIUS 1000SRS和729在非均整模式下立体定向放射治疗(SBRT)和立体定向放射外科治疗(SRS)中的剂量验证结果。方法:选取20例非均整模式的SBRT和SRS计划,分别采用PTW公司1000SRS和729二维电离室矩阵进行剂量验证,对比分析其通过率、评估点数及未通过区域。结果:采用Gamma 2D(按3 mm和3%的误差标准),local dose方法进行分析,1000SRS矩阵通过率为(97.6±1.8)%,评估点数平均为1191,未通过区域集中在射野边缘,而729矩阵通过率为(94.8±2.7)%,平均评估点数为155,未通过区域集中在低剂量区。结论:对于高剂量率、高剂量梯度的非均整模式下的SBRT和SRS计划验证,1000SRS液体电离室矩阵具有较大的优势。  相似文献   

6.
作者用中国女性盆腔体模对放疗中所使用的X(γ)射线的射野剂量学特性如百分深度剂量、等剂量分布等进行了测量,其辐射等效性均符合要求。  相似文献   

7.
基于非晶硅电子射野影像装置的剂量响应研究   总被引:1,自引:0,他引:1  
目的:临床条件下研究探讨非晶硅电子射野影像装置(a-Si EPID)的剂量响应特性。方法 :本实验在Elekta Precise直线加速器上X射线能量分别为6 MV和10 MV,采用PTW电离室、等效固体水和不同厚度铜板条件下实施测量。首先,通过EPID信号和模体中电离室的测量比较,确定出EPID剂量响应的建成厚度。其次,临床条件下利用模体的不同厚度测量分析有关剂量、每脉冲剂量和脉冲重复频率(PRF)函数的EPID信号响应情况。结果:在不增加建成材料、10 cm~60cm空气间隙条件下EPID显示了最大11.6%的过响应信号变化。临床上额外将3 mm铜建成区置于EPID上方,空气间隙大于40 cm条件下EPID响应变化将会降至1%以内。在测量范围内随MU数、PRF和每脉冲剂量变化的EPID信号响应是非线性的,最大信号变化接近于3%。因假峰和图像滞后效应等影响,短时间照射EPID会明显地产生出低剂量响应。结论:采用合适的建成层和实施对每脉冲剂量、PRF等校正,非晶硅EPID剂量响应变化可控制在1%以内,从而建立起较为理想的剂量响应曲线。  相似文献   

8.
利用治疗时得到的影像信息重建病人体内所接受的真实剂量是剂量引导下放射治疗(DGRT)技术临床应用的重要内容之一。治疗剂最重建方法之一是:通过匹对模拟的射野影像和治疗时获得的射野影像来反推射野注量分布,然后计算出治疗时病人体内实际接受的剂量:由此重建出的射野注量是否精确受诸多因素的影响.因素之一是是否能真实地模拟射野影像。本文用傅立叶卷积积分法模拟射野影像,采用不同积分半径得剑不同程度散射近似下的模拟射野影像。通过用不同程度散射近似下的模拟射野影像来反推射野注量分布.考察了散射因素对反推射野注量分布的影响。发现:即便射野影像在没有噪音和分辨率足够高的理想情况下,要精确地反推射野注量,必须在模拟射野影像中充分考虑散射因素。  相似文献   

9.
目的:评价我中心新购美国Sun Nuclear公司生产二维半导体阵列Mapcheck的剂量学特点。方法:使用美国瓦里安公司23EX直线加速器高能光子束照射Mapcheck研究其重复性,线性以及验证其本身阵列校准方法的准确性;同时在研究其重复性,脉冲率依赖性及输出因子时使用德国PTW30013电离室测量数据并比较。结果:实施Mapcheck专用阵列校准方法后在0o和180o测量结果差异介于-0.5%至0.7%之间。矩阵重复性最大标准差是±0.16%,中心轴半导体探头(C点)12次测量标准差为0.065%。中心探头随剂量率变化最大范围是0.78%。同指形电离室结果比较,小于4cm×4cm射野时,Mapcheck低估了输出因子最大达1.1%,大于15cm×15cm射野时,Mapcheck开始高估输出因子最大达0.9%。结论:Mapcheck的各项剂量学检测结果符合出厂指标,适合应用于临床作常规射野剂量学质量保证及调强剂量学验证。  相似文献   

10.
目的:在全身放射治疗条件下,测量直线加速器空气中射线场均匀性,水模体内剂量分布情况,以及不同规格水模体的百分深度剂量值。方法:将加速器的源皮距(SSD)延长至450 cm,机架头旋转为90°,准直器开到最大,治疗头旋转为45°,形成菱形射野,使用剂量测量仪:PTW-UNIDOS,电离室:PTW 30001,测量Varian Clinac 2100C直线加速器的剂量值。结果与结论:加速器在空气中射线场剂量:T方向上总的平均值为5.147,绝对误差为5.8%,归一后相对误差达到;G方向上总的平均值为5.124,绝对误差为5.1%,归一后相对误差达到;此加速器的射线场均匀性可以用于全身放射治疗。水模体内剂量分布情况,在10 cm深度处,平均剂量值为8.960,归一数据中的绝对误差为;在20 cm深度处,平均剂量为6.381,从归一数据中的绝对误差为。  相似文献   

11.
目的:实现射野区域剂量分布Gamma([γ])通过率的计算,对治疗传输的准确性进行评估。方法:从Oncentra Masterplan治疗计划系统中随机提取6位完全匿名患者的调强放射治疗验证计划,导出DICOM格式的验证计划并利用Matlab软件重建多叶准直器区域和剂量。然后将验证计划移植到MatriXX模体并测量剂量分布。用Matlab代码对验证计划剂量分布和模体测量的绝对剂量分布进行分析。结果:传统方法[γ]通过率受计算区域选择影响较大,而以射野区域作为计算区域则避免了这个问题,两种方法计算得到的[γ]通过率有统计学差异([P]<0.05)。结论:射野区域的剂量验证避免了[Dn]值对[γ]通过率的影响,而且对射野区域利用剂量面积直方图分析其剂量特性,有利于评估治疗计划系统临床治疗的准确性和指导临床工作。  相似文献   

12.
体部肿瘤精确放疗摆位误差分析   总被引:20,自引:0,他引:20  
目的:确定体部肿瘤精确放疗时的摆位误差。方法:使用电子射野影像系统EPID对28例体部肿瘤病人精确放疗时所拍摄的378幅射野图像与计划系统生成的数字重建放射片DRR进行比较,并对病人摆位的左右(x)和前后(y)及头脚(z)方向误差进行测量。结果:各方向摆位误差的分布均近似正态分布。胸部的摆位偏差主要发生在y、z方向,腹部和盆腔部的摆位偏差主要发生在x、z方向。结论:体位的随机误差大于系统误差,摆位所带来的偏差主要来源于随机误差。  相似文献   

13.
目的:探讨臂架或准直器角度的改变对均整(FF)与非均整(FFF)两种模式的射线剂量的影响。方法:选用Versa HD直线加速器配备的6 MV/10 MV光子束FF/FFF模式4档能量在设定好九点位置的10 cm×10 cm标准射野内进行实验。首先,借助IMF等中心夹具将Mapcheck2固定于治疗机机头,并用Mapcheck2测量相同臂架与准直器角度条件下4种光子束输出的平面剂量值;其次,用Mapcheck2测量在相同臂架角度、不同准直器角度与相同准直器角度、不同臂架角度两种条件下4种光子束的中心轴剂量值;最后,固定准直器为0°,设立两组臂架对穿射野(0°与180°,90°与270°)。拆除Mapcheck2,采用固体水和FC65-G电离室建立一个测量模体来测量4种光子束在两组等中心对穿野的剂量。运用SPSS统计软件对该实验收集到的数据进行对比分析。结果:在相同臂架与准直器角度条件下,4种光子束辐照9个点的平面剂量之间均存在明显统计学差异(P6 MV FF =0.020, P6 MV FFF=0.017, P10 MV FF =0.030, P10 MV FFF=0.016);而不同臂架角度或不同准直器角度条件下,4种能量光子束的中心轴点剂量值均无统计学差异。在0°与180°的对穿野,4种能量光子束的输出剂量存在统计学差异(P6 MV FF =0.001, P6 MV FFF=0.002, P10 MV FF =0.003, P10 MV FFF=0.001),而在90°与270°的对穿野无统计学差异。结论:Versa HD直线加速器拥有优良的机械等中心性能。在实际工作时,臂架和准直器的旋转,均不影响光子束的中心轴剂量的准确输出。在FF模式下,射线能量越高,受治疗床影响越小;FFF模式射线由于射线质软,能量越高,更易受到治疗床的衰减作用,在实际中应引起重视。  相似文献   

14.
目的:在分析非晶硅电子射野影像系统(a-Si EPl D)的剂量学基础上,利用开发的软件自动分析每日采集的射野影像,获取直线加速器的输出剂量、平坦度、对称性及射野尺寸等参数,使a-Si EPID成为加速器的快速日检工具。方法:首先对a-Si EPID进行校准,并将其分成16个大小为10 cm×10 cm的子区域,移动a-Si EPID依次照射,截取中心轴附近10 cm×10 cm(SSD 160 cm)的区域相互叠加获取增益影像,并进行输出剂量校准。随后通过自编软件根据校准数据分析每天标准射野影像得出加速器日检参数:输出剂量、射野尺寸、平坦度、对称性,并将结果与指形电离室及三维水箱数据进行比较。结果:加速器出束从97 MU至103 MU,模拟剂量偏差±3%。结果显示a-Si EPID中心轴灰度剂量呈高度线性,与指形电离室的最大偏差为小于1%。平坦度、对称性两个参数的基线偏离与三维水箱高度一致,结果均分别小于±0.5%和±1.5%。结论:因测量准确性及便利性,可以利用自编软件及a-Si EPID用于加速器日检。  相似文献   

15.
目的:利用二维电离室矩阵系统Mapcheck对后装治疗计划剂量曲线分布进行测量与分析。方法:通过Mapcheck测量10例单管后装治疗计划探头层面的剂量分布曲线,并与Oncentra后装治疗计划系统所得的其探头层面剂量分布曲线进行相对剂量的γ分析(2 mm/2%)。结果:10例单管后装计划的平均通过率为98.5%。结论:Mapcheck作为后装治疗剂量分布曲线测量工具具有成本低、易于测量等优势,应用其对后装治疗计划进行初步的相对剂量验证是可行的。  相似文献   

16.
目的:把电子影像射野系统(EPID)应用到放疗质量保证的多个方面,从而保障病人得到精确放疗。方法:根据不同目的采用EPID不同模式拍片,如单曝光,双曝光,开始-中途-结束,连续拍片等模式,将获得的图像与目的图像进行比较。结果:对于患者的正位和侧位图像能较好的控制摆位误差;能简洁快速地验证光野和射野一致性;能大概地验证治疗计划系统(TPS)中调强射野的注量图;能检验多叶准直器(MLC)的到位精度。结论:充分合理地利用EPID,可在放疗中进行多项质量保证,保证精确放疗。  相似文献   

17.
目的:非晶硅电子射野影像装置(a-Si EPID)分别与Arc CHECK和二维电离室矩阵(PTW729)两种验证技术在宫颈癌剂量验证中的应用比较。方法:随机选取40例宫颈癌容积旋转调强技术(VMAT)和调强放射治疗技术(IMRT)病例。在相应的模体上分别设计出验证计划,将验证计划分为VMAT和IMRT两组,利用a-Si EPID和Arc CHECK验证VMAT计划,a-Si EPID和PTW729验证IMRT计划,在UNIQUE加速器上进行验证。采用γ分析方法(3%,3 mm,10%标准),比较两组验证计划的相对剂量与绝对剂量通过率和X、Y方向的profile。结果:VMAT组:Arc CHECK的绝对剂量通过率为(97.73±1.98)%,相对剂量通过率为(96.96±2.34)%;a-Si EPID的绝对剂量通过率为(97.58±1.88)%,相对剂量通过率为(98.13±1.47)%。IMRT组:PTW729的绝对剂量通过率为(98.48±1.89)%,相对剂量通过率为(97.32±1.56)%;a-Si EPID的绝对剂量通过率为(98.74±1.77)%,相对剂量通过率为(97.98±1.65)%。同时两组X、Y方向的profile理论与实测很相近,理论剂量分布图与实测计算剂量分布图在高低剂量点分布上重合度较高。结论:3种验证技术的结果在剂量学上没有明显差异,但a-Si EPID具有成像分辨率高、图像处理快捷、使用方便等优点。  相似文献   

18.
目的:建立磁共振加速器Unity绝对剂量校准方法和输出量日检流程,并评价Unity输出量长期稳定性。方法:使用防水型指型电离室(PTW 30013)和特制的靴型水箱(Boot Phantom)进行绝对剂量校准,利用电子射野影像装置(EPID)图像确保模体摆位的准确性,选择适当的磁场修正因子修正磁场条件下电离室的响应。为节省时间,建立EPID图像特定像素点的累积灰度值与输出量的校准曲线,实现输出量日检。分析国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院北京协和医学院肿瘤医院放疗科新装的Unity从2019年10月22日至2020年5月9日的输出量日检结果,评估其输出量长期稳定性。结果:标准测量条件(SAD=143.5 cm,射野大小为10 cm×10 cm,机架角0°)下,水下10 cm处100 MU绝对剂量校准为0.87 Gy。在输出量变化±5%范围内,EPID像素点的累积灰度值与输出量高度线性相关(R2=0.999 9)。在116次Unity输出量日检中,输出量偏移基准值大于1%的仅有2次,并被标准测量方法证实。基于EPID的输出量日检方法相比标准输出量测量方法更方便快捷。结论:与常规加速器相比,Unity的绝对剂量校准更为复杂,需谨慎选择测量工具、摆位方式、测量条件和修正因子。初步结果显示,Unity具有较好的输出量长期稳定性;但真实临床工作负荷条件下,输出量长期稳定性还有待进一步观察。  相似文献   

19.
目的:利用蒙特卡罗方法分别模拟True Beam直线加速器6 MV均整和非均整(Flattening Filter-Free,FFF)模式,计算其射线质和射野输出因子,并比较上述参数与实际测量结果的差异。方法:利用Beamnrc和Dosxyznrc程序建立加速器机头模型并计算两档能量在参考条件下不同射野的剂量学数据。输出上述数据,计算各个射野射线质与实际测量值的相对偏差,对其绝对值做统计分析;利用各个射野中心轴上水下10 cm处的剂量值获取射野输出因子,并计算与测量值的相对偏差,绝对化后做统计分析。结果:6 MV和6FFF两档能量射线质相对偏差绝对值分别为(0.459±0.462)%和(0.486±0.300)%,射野输出因子相对偏差绝对值分别为(1.315±1.868)%和(0.904±1.214)%。结论:该模型的射线质和输出因子与测量结果相对偏差较小,基本可用于临床剂量学研究。  相似文献   

20.
全中枢照射技术新探索   总被引:2,自引:0,他引:2  
目的:阐述一种普遍适合于全中枢放射治疗的方法。方法:使用precise plan三维适形计划系统进行计划设计,在计划设计过程中综合利用了非共面射野衔接技术、相邻两野相切技术和正向子野添加技术,最后利用detla4三维剂量验证模体对射野衔接处进行剂量测量验证。结果:计划显示在射野衔接处没有明显的剂量冷点或者热点出现,衔接位置两侧各条等剂量线实现了无缝衔接,靶区得到了理想的剂量分布;并且在剂量验证的过程中发现,当模拟的移床精度控制在±1 mm时,detla4测量衔接处没有明显的剂量偏差,结果符合临床治疗需要。结论:与以往及常规方法相比,本文提到的这种方法适合于绝大多数全中枢放射治疗病例,并且可以在射野衔接处获得更为理想的剂量分布效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号