首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Embryonic cell suspensions (14-day embryos) containing either B3 or B1-B2 serotonergic cell groups were obtained by microdissection of specific rhombencephalic regions and transplanted into the transected spinal cord of adult male Sprague-Dawley rats. After 3 months of survival, the animals were sacrificed and the spinal cords processed for the immunocytochemical detection of serotonin (5-HT). 5-HT-immunoreactive fibers from B1-B2-grafted cells were selectively distributed in the ventral horn and the intermediolateral cell column (IML) where they established conventional synaptic contacts. However, B3 5-HT cells grew and extended their processes into the dorsal horn where in addition we observed scarce synaptic contacts as in the normal spinal cord. These results suggest that the specificity of the 5-HT innervation of the spinal cord by grafted neurons is due, at least partly, to the presence of local mechanisms mediating guidance and cell recognition, possibly operating in conjunction with preexisting substrate pathways.  相似文献   

2.
Functionally useful repair of the mature spinal cord following injury requires axon growth and the re-establishment of specific synaptic connections. We have shown previously that axons from peripherally grafted human embryonic dorsal root ganglion cells grow for long distances in adult host rat dorsal roots, traverse the interface between the peripheral and central nervous system, and enter the spinal cord to arborize in the dorsal horn. Here we show that these transplants mediate synaptic activity in the host spinal cord. Dorsal root ganglia from human embryonic donors were transplanted in place of native adult rat ganglia. Two to three months after transplantation the recipient rats were examined anatomically and physiologically. Human fibres labelled with a human-specific axon marker were distributed in superficial as well as deep laminae of the recipient rat spinal cord. About 36% of the grafted neurons were double labelled following injections of the fluorescent tracers MiniRuby into the sciatic and Fluoro-Gold into the lower lumbar spinal cord, indicating that some of the grafted neurons had grown processes into the spinal cord as well as towards the denervated peripheral targets. Electrophysiological recordings demonstrated that the transplanted human dorsal roots conducted impulses that evoked postsynaptic activity in dorsal horn neurons and polysynaptic reflexes in ipsilateral ventral roots. The time course of the synaptic activation indicated that the human fibres were non-myelinated or thinly myelinated. Our findings show that growing human sensory nerve fibres which enter the adult deafferentated rat spinal cord become anatomically and physiologically integrated into functional spinal circuits.  相似文献   

3.
Superior cervical ganglia (SCG) contain substance P-like immunoreactive (SP-IR) fibers but not SP-IR neurons. In the present study, SCG were excised from adult rats and transplanted into the same animal's spinal thoracic cord (Th10). One or two weeks after the operation, SP-IR fibers from the host spinal cord or a higher level had grown and entered the transplanted SCG where they formed direct contacts with SCG neurons. However, these phenomena could not be observed when dorsal root ganglia (L4), which contained numerous SP-IR cells, were transplanted into their own spinal cord (Th10). This suggests that the SP-IR neuron system in the adult is able to grow "new axons' to the grafted tissue to form a "new SP-IR' neuronal circuit when the grafted tissue has lost its own SP-IR input.  相似文献   

4.
The present experiment was performed to determine whether different types of grafted central cholinergic neurons are able to form synaptic contacts with host hippocampal neurons. Grafts from the septal-diagonal band area, which contain the neurons that normally innervate the hippocampal formation, were compared to those from the nucleus basalis magnocellularis region (NBM), the striatum, the pontomesencephalic tegmentum of the brain stem, and the spinal cord. The regions were dissected from 14- to 16-day-old rat fetuses, and the same number of viable cells (35 x 10(4] from each of the different regions was stereotaxically injected as a cell suspension into the hippocampus of rats subjected to a complete fimbria-fornix lesion, transecting the intrinsic septohippocampal pathways. At 14 to 17 weeks after transplantation, the brains were processed for choline acetyltransferase (ChAT) immunocytochemistry at the light and electron microscopic levels and acetylcholinesterase (AChE) histochemistry at the light microscopic level. There was a great variation in the number of surviving ChAT-positive cells among the different graft types. The septal grafts contained the highest number of ChAT-positive cells, and the striatal grafts showed the lowest numbers. The NBM, brain stem, and spinal cord grafts were in between. The differences in the number of ChAT-positive neurons between the groups matched, in general, the differences found in the magnitude of graft-derived AChE-positive fiber growth into the host hippocampal formation. At the electron microscopical level, all types of grafts were capable of forming synaptic contacts with host elements, however, with vast differences in the number of synapses found. The septal grafts produced the highest number of contacts, whereas the striatal and spinal cord grafts produced very few contacts. The ultrastructure of the cholinergic fibers from grafts obtained from the forebrain areas, i.e., septum, NBM, and striatum all appeared normal, whereas brain stem and spinal cord grafts produced different types of anomalies. The results show that grafted cholinergic neurons, that normally do not innervate the hippocampus, can send axons and form synaptic contacts in the host hippocampus. The ability to reinnervate the denervated hippocampal target appears to be shared by the embryologically closely related forebrain cholinergic neuron types, i.e., the septal, NBM, and striatal neurons. The marked differences in overall fiber ingrowth and number of synapses observed between these different types of grafts could be explained largely on the basis of differences in survivability of each grafted neuron type. By contrast, the reinnervation obtained from the grafted brain stem and spinal cord neurons were both quantitatively and qualitatively abnormal.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Transplanting embryonic precursors of GABAergic neurons from the medial ganglionic eminence (MGE) into adult mouse spinal cord ameliorates mechanical and thermal hypersensitivity in peripheral nerve injury models of neuropathic pain. Although Fos and transneuronal tracing studies strongly suggest that integration of MGE‐derived neurons into host spinal cord circuits underlies recovery of function, the extent to which there is synaptic integration of the transplanted cells has not been established. Here, we used electron microscopic immunocytochemistry to assess directly integration of GFP‐expressing MGE‐derived neuronal precursors into dorsal horn circuitry in intact, adult mice with short‐ (5–6 weeks) or long‐term (4–6 months) transplants. We detected GFP with pre‐embedding avidin–biotin‐peroxidase and GABA with post‐embedding immunogold labeling. At short and long times post‐transplant, we found host‐derived synapses on GFP‐immunoreactive MGE cells bodies and dendrites. The proportion of dendrites with synaptic input increased from 50% to 80% by 6 months. In all mice, MGE‐derived terminals formed synapses with GFP‐negative (host) cell bodies and dendrites and, unexpectedly, with some GFP‐positive (i.e., MGE‐derived) dendrites, possibly reflecting autoapses or cross talk among transplanted neurons. We also observed axoaxonic appositions between MGE and host terminals. Immunogold labeling for GABA confirmed that the transplanted cells were GABAergic and that some transplanted cells received an inhibitory GABAergic input. We conclude that transplanted MGE neurons retain their GABAergic phenotype and integrate dynamically into host‐transplant synaptic circuits. Taken together with our previous electrophysiological analyses, we conclude that MGE cells are not GABA pumps, but alleviate pain and itch through synaptic release of GABA.  相似文献   

6.
Neural progenitor cells, including neural stem cells, are a potential expandable source of graft material for transplantation aimed at repairing the damaged CNS. Here we present the first evidence that in vitro-expanded fetus-derived neurosphere cells were able to generate neurons in vivo and improve motor function upon transplantation into an adult rat spinal-cord-contusion injury model. As the source of graft material, we used a neural stem cell-enriched population that was derived from rat embryonic spinal cord (E14.5) and expanded in vitro by neurosphere formation. Nine days after contusion injury, these neurosphere cells were transplanted into adult rat spinal cord at the injury site. Histological analysis 5 weeks after the transplantation showed that mitotic neurogenesis occurred from the transplanted donor progenitor cells within the adult rat spinal cord, a nonneurogenic region; that these donor-derived neurons extended their processes into the host tissues; and that the neurites formed synaptic structures. Furthermore, analysis of motor behavior using a skilled reaching task indicated that the treated rats showed functional recovery. These results indicate that in vitro-expanded neurosphere cells derived from the fetal spinal cord are a potential source for transplantable material for treatment of spinal cord injury.  相似文献   

7.
Great interest exists in using cell replacement strategies to repair the damaged central nervous system. Previous studies have shown that grafting rat fetal spinal cord into neonate or adult animals after spinal cord injury leads to improved anatomic growth/plasticity and functional recovery. It is clear that fetal tissue transplants serve as a scaffold for host axon growth. In addition, embryonic Day 14 (E14) spinal cord tissue transplants are also a rich source of neural-restricted and glial-restricted progenitors. To evaluate the potential of E14 spinal cord progenitor cells, we used in vitro-expanded neurospheres derived from embryonic rat spinal cord and showed that these cells grafted into lesioned neonatal rat spinal cord can survive, migrate, and differentiate into neurons and oligodendrocytes, but rarely into astrocytes. Synapses and partially myelinated axons were detected within the transplant lesion area. Transplanted progenitor cells resulted in increased plasticity or regeneration of corticospinal and brainstem-spinal fibers as determined by anterograde and retrograde labeling. Furthermore, transplantation of these cells promoted functional recovery of locomotion and reflex responses. These data demonstrate that progenitor cells when transplanted into neonates can function in a similar capacity as transplants of solid fetal spinal cord tissue.  相似文献   

8.
Differentiation of pluripotent neural stem cells engrafted into the adult normal and injured spinal cord is restricted to the glial lineage, suggesting that in vitro induction toward a neuronal lineage prior to transplantation and/or modification of the host environment may be necessary to initiate and increase the differentiation of neurons. In the present study, we investigated the differentiation of neuronal-restricted precursors (NRPs) grafted into the normal and contused adult rat spinal cord. NRPs proliferated through multiple passages in the presence of FGF2 and NT3 and differentiated into only neurons in vitro in the presence of retinoic acid and the absence of FGF2. Differentiated NRPs expressed GABA, glycine, glutamate, and ChAT. Two weeks to 2 months after engraftment of undifferentiated NRPs into adult normal spinal cord, large numbers of surviving cells were seen in all of the animals. The majority differentiated into betaIII-tubulin-positive neurons. Some transplanted NRPs expressed GABA and small numbers were glutamate- and ChAT-positive. NRPs were also transplanted into the epicenter of the contused adult rat spinal cord. Two weeks to 2 months after transplantation, some engrafted NRPs remained undifferentiated nestin-positive cells. Small numbers were MAP2- or betaIII-tubulin-positive neurons. However, the expression of GABA, glutamate, or ChAT was not observed. These results show that NRPs can differentiate into different types of neurons in the normal adult rat spinal cord, but that such differentiation is inhibited in the injured spinal cord. Manipulation of the microenvironment in the injured spinal cord will likely be necessary to facilitate neuronal replacement.  相似文献   

9.
背景:目前研究多为骨髓间充质干细胞的体外培养及细胞移植对颅内疾病的治疗,对植入细胞在损伤脊髓中的成活、分化、迁移、结构重建等了解有限。 目的:探讨局部骨髓间充质干细胞移植在脊髓损伤修复中的作用和骨髓间充质干细胞替代治疗的可行性。 方法:成年健康雌性SD大鼠随机分为细胞移植组和对照组,建立SD大鼠脊髓横断损伤模型,伤后即刻分别向损伤区局部移植大鼠骨髓间充质干细胞悬液或无钙镁磷酸缓冲液。在术前和术后1 d,1周,2周,3周,4周和8周进行BBB评分,观测大鼠的运动功能,并于移植后1周免疫组织化学染色法观察BrdU标记的骨髓间充质干细胞在脊髓损伤处的存活情况,移植后4周进行损伤脊髓的大体观察和组织学检测。 结果与结论:移植后第1~8周细胞移植组BBB评分均髙于对照组;术后1周免疫组织化学染色结果显示在细胞移植组大鼠脊髓远端检测到BrdU阳性细胞,术后4周脊髓损伤处发现有神经纤维。证实通过损伤后立即局部注射的方式将骨髓间充质干细胞移植进大鼠脊髓损伤区,细胞可在损伤区存活;存活的骨髓间充质干细胞可分化为神经元,在损伤局部形成神经元通路,从而促进脊髓神经纤维传导功能的恢复,并促进高位脊髓损伤后大鼠后肢运动功能恢复。  相似文献   

10.
In order to compensate the loss of motoneurons resulting from severe spinal cord injury and to reestablish peripheral motor connectivity, solid pieces of fetal spinal cord, taken from embryonic day 14 rat embryos, were transplanted into unilateral aspiration lesions of the cervical spinal cord of adult rats. Concomitantly, one end of a 3.5-cm autologous peripheral nerve graft was put in close contact with the embryonic graft; the other end was sutured to the distal stump of the musculocutaneous nerve which innervate the biceps brachii muscle. The animals were examined 3 and 6 months after surgery. Following intramuscular injection of horseradish peroxidase, retrograde axonal labeling studies indicated that both transplanted and host spinal neurons were able to extend axons all the way through the peripheral nerve graft and nerve stump, up to the reconnected muscles. The labeled cells in the transplant were generally observed close to the intraspinal tip of the peripheral nerve graft. Retrograde axonal tracing, as well as electrophysiological and histological data, demonstrated the sensory and motor reinnervation of the reconnected muscles. This muscular reinnervation was able to reverse the atrophic changes observed in the denervated muscle. In control experiments, the extraspinal end of the peripheral nerve graft was ligatured in order to compare the differentiation of the transplanted neurons and the survival of their growing axons with or without their muscular targets. Six months after both types of surgery, large-size grafted neurons, identified as motoneurons by immunocytochemistry for peripherine and calcitonin gene-related peptide, were only observed in fetal spinal cord transplants which were connected to denervated muscles, thus demonstrating the trophic influence of the muscle target on the survival and differentiation of the transplanted neurons and on the maintenance of the axons they had grown into the peripheral nerve graft.  相似文献   

11.
In the present study, we have characterized an atraumatic grafting technique which permits multiple, segmental, and lamina-specific injections into cervical or lumbar spinal cord. Cell injections were performed in spinally mounted rats of different ages and spinal cord size, using a micromanipulator and glass microcapillary connected to a digital microinjector. For grafting, we used human neuroteratoma (hNT) cells, BrdU-labeled rat spinal precursors or primary embryonic spinal cord neurons isolated from E14 spinal cord of the eGFP+ rat. Systematic quantification of grafted cells was performed using stereological principles of systematic random sampling and semi-automated optical Disector software. Volume reconstruction was performed using serial sections from grafted areas and custom-developed software (Ellipse) which permits "two reference points" semi-automated alignment of images, as well as volume reconstruction and calculation. By coupling these techniques, it is possible to achieve a relatively precise and atraumatic cell delivery into multiple spinal cord segments and specific spinal laminae. Consistency of the multiple grafts position in the targeted laminar areas was verified by a systematic volume reconstruction. Good survival of implanted cells for the three different cell lines used indicate that this grafting technique coupled with a systematic analysis of the individual grafting sites can represent a valuable implantation-analytical system.  相似文献   

12.
Degenerative spinal motor diseases, like amyotrophic lateral sclerosis, are produced by progressive degeneration of motoneurons. Their clinical manifestations include a progressive muscular weakness and atrophy, which lead to paralysis and premature death. Current pharmacological therapies fail to stop the progression of motor deficits or to restore motor function. The purpose of our study was to explore the possible beneficial effect of mouse adult hematopoietic stem cells (hSCs) transplanted into the spinal cord of a mouse model of motoneuron degeneration. Our results show that grafted hSCs survive in the spinal cord. In addition, the number of motoneurons in the transplanted spinal cord is larger than in non-transplanted mdf mice at the same spinal cord segments and importantly, motor function significantly improves. These effects can be explained by the increased levels of glial cell line derived neurotrophic factor (GDNF) around host motoneurons produced by the grafted cells. Thus, these experiments demonstrate the neuroprotective effect of adult hSCs in the model employed and indicate that this cell type may contribute to ameliorating motor function in degenerative spinal motor diseases.  相似文献   

13.
The spinal course, termination pattern, and postsynaptic targets of the rubrospinal tract, which is known to contribute to the initiation and execution of movements, were studied in the rat at the light and electron microscopic levels by using the anterograde tracer Phaseolus vulgaris-leucoagglutinin (PHA-L) in combination with calbindin-D28k (CaBP), gamma-aminobutyric acid (GABA), and glycine immunocytochemistry. After injections of PHA-L unilaterally into the red nucleus, labelled fibers and terminals were detected at cervical, thoracic, and lumbar segments of the spinal cord. Most of the descending fibers were located in the dorsolateral funiculus contralateral to the injection site, but axons descending ipsilaterally were also revealed. Rubrospinal axon terminals were predominantly found in laminae V-VI and in the dorsal part of lamina VII at all levels and on both sides of the spinal cord, but stained collaterals were also seen in the ventrolateral aspect of Clark's column and in the ventral regions of lamina VII on both sides. The proportion of axonal varicosities revealed on the ipsilateral side varied at different segments and represented 10-28% of the total number of labelled boutons. Most of the labelled boutons were engaged in synaptic contacts with dendrites. Of the 137 rubrospinal boutons investigated, only 2 were found to establish axosomatic synaptic junctions in the lumbar spinal cord contralateral to the PHA-L injection. With the postembedding immunogold method, 80.8% of dendrites establishing synaptic contacts with rubrospinal terminals did not show immunoreactivity for either GABA or glycine, whereas 19.2% of them were immunoreactive for both amino acids. Rubrospinal axons made multiple contacts with CaBP-immunoreactive neurons in laminae V-VI. Synaptic contacts between rubrospinal terminals and CaBP-immunoreactive dendrites were identified at the electron microscopic level, and all CaBP-containing postsynaptic dendrites investigated were negative for both GABA and glycine. The results suggest that rubrospinal terminals establish synaptic contacts with both excitatory and inhibitory interneurons in the rat spinal cord, and a population of excitatory interneurons receiving monosynaptic rubrospinal input is located in laminae V-VI.  相似文献   

14.
The synaptic relationship between spinal cord central gray projection neurons and immunocytochemically identified afferents in the rat were examined at the light microscopic level using the combined techniques of retrogradely transported True blue and serotonin (5-HT), enkephalin (ENK), and substance P (SP) immunocytochemistry. At L4-L6, numerous retrogradely labeled neurons could be identified around the central canal after large bulbar injections of True blue. Of these projection neurons, 75% were apposted by 5-HT varicosities, 57% by ENK varicosities and 58% by SP varicosities. Hemisection of the spinal cord produced a marked reduction in the amount of 5-HT immunoreactivity and the number of putative 5-HT contacts observed on neurons of the spinal cord central gray. A small decrease in SP immunoreactivity and putative contacts was seen after dorsal rhizotomy. Neither rhizotomy nor hemisection produced discernable changes in ENK immunofluorescence. Based on the distributions of 5-HT, ENK and SP in the spinal cord, we suggest that a more precise delineation of lamina X in the rat can be made according to immunocytochemical rather than strictly morphological criteria.  相似文献   

15.
Combination of ex vivo gene transfer and cell transplantation is now considered as a potentially useful strategy for the treatment of spinal cord injury. In a perspective of clinical application, autologous transplantation could be an option of choice. We analyzed the fate of adult rat cortical astrocytes genetically engineered with a lentiviral vector transplanted into a lesioned rat spinal cord. Cultures of adult rat cortical astrocytes were infected with an HIV-1-derived vector (TRIP-CMV-GFP) and labeled with the fluorescent dye Hoechst. Transfected and labeled astrocyte suspension was injected at T11 in rats in which spinal cord transection at T7-T8 levels had been carried out 1 week earlier. Six weeks after grafting, the animals were sacrificed and transplants were retrieved either by Hoechst fluorescence or by immunohistochemistry for detection of glial fibrillary acidic protein (GFAP) and vimentin. Grafted astrocytes expressing green fluorescent protein (GFP) were found both at the injection and transection sites. Genetically modified astrocytes thus survived, integrated, and migrated within the host parenchyma when grafted into the completely transected rat spinal cord. In addition, they retained some ability to express the GFP transgene for at least 6 weeks after transplantation. Adult astrocytes infected with lentiviral vectors can therefore be a valuable tool for the delivery of therapeutic factors into the lesioned spinal cord.  相似文献   

16.
ES cells transfected with the MASH1 gene yielded purified spinal motoneuron precursors expressing HB9 and Islet1. The cells lacked the expression of Nogo receptor that was of great advantage for axon growth after transplantation to an injured spinal cord. After transplantation, mice with the complete transection of spinal cord exhibited excellent improvement of the motor functions. Electrophysiological assessment confirmed the quantitative recovery of motor-evoked potential in the transplanted spinal cord. In the grafted spinal cord, gliosis was inhibited and Nogo receptor expression was scarcely detected. The transplanted cells labeled with GFP showed extensive outgrowth of axons positive for neurofilament middle chain, connected to each other and expressed Synaptophysin, Lim1/2 and Islet1. Thus, the in vivo differentiation into mature spinal motoneurons and the reconstitution of neuronal pathways were suggested. The grafted cell population was purified for neurons and was free from teratoma development. These therapeutic strategies may contribute to a potent treatment for spinal cord injury in future.  相似文献   

17.
The retrograde horseradish peroxidase technique was used to: (1) identify and assess the overall morphology of large neurons in the ventrolateral portion (VL) of rat trigeminal nucleus oralis projecting to cervical, thoracic and lumbosacral levels of the spinal cord; and (2) characterize the synaptic endings terminating on their dendrites. The morphology of large VL neurons projecting to all spinal levels is similar. They have 25–50 μm pyramidal-shaped somata which emit 3–6 primary dendrites. These primary dendrites give rise to spherical to elliptical-shaped dendritic arbors measuring up to 700 μm in diameter. Labeled axons enter either a deep axon bundle or the medial portion of the spinal V tract. Dendrites of labeled neurons are contacted by axonal endings of 3 types. The most numerous endings are filled with clear, spherical synaptic vesicles and usually form a single asymmetrical contacts along the entire length of dendritic shafts. Synapsing less frequently on dendritic shafts are endings containing pleomorphic synaptic vesicles and forming single symmetrical synaptic contacts. The least frequently encountered synaptic terminal contains flattened synaptic vesicles and makes a single symmetrical synaptic contact with a dendritic shaft.  相似文献   

18.
It has been established that there is a strong functional link between sensory neural circuits on the two sides of the spinal cord. In one of our recent studies we provided a morphological confirmation of this functional phenomenon, presenting evidence for the presence of a direct commissural connection between the lateral aspects of the dorsal horn on the two sides of the lumbar spinal cord. By using a combination of neural tracing and immunocytochemical detection of neural markers like vesicular glutamate transporters, glutamic acid decarboxylase, glycine transporter, and met-enkephalin (which are characteristic of various subsets of excitatory and inhibitory neurons), we investigated here the distribution, synaptic relations, and neurochemical characteristics of the commissural axon terminals. We found that the cells of origin of commissural fibers in the lateral aspect of the dorsal horn were confined to laminae III-IV and projected to the corresponding area of the contralateral gray matter. Most of the commissural axon terminals established synaptic contacts with dendrites. Axospinous or axosomatic synaptic contacts were found in limited numbers. We demonstrated that interactions among commissural neurons also exist. More than three-fourths of the labeled axon terminals were immunostained for glutamic acid decarboxylase and/or glycine transporter, but none of them showed positive immunoreaction for met-enkephalin and vesicular glutamate transporters. The results indicate that there is a substantial reciprocal commissural synaptic interaction between the lateral aspects of laminae III-IV on the two sides of the lumbar spinal cord and that this pathway may transmit both inhibitory and excitatory signals to their postsynaptic targets.  相似文献   

19.
The main rationale for cell-based therapies following spinal cord injury are: (i) replacement of degenerated spinal cord parenchyma by an axon growth supporting scaffold; (ii) remyelination of regenerating axons; and (iii), local delivery of growth promoting molecules. A potential source to meet these requirements is adult neural progenitor cells, which were examined in the present study. Fibroblast growth factor 2-responsive adult spinal cord-derived syngenic neural progenitor cells were either genetically modified in vitro to express green fluorescent protein (GFP) using retroviral vectors or prelabelled with bromodeoxyuridine (BrdU). Neural progenitor cells revealed antigenic properties of neurons and glial cells in vitro confirming their multipotency. This differentiation pattern was unaffected by retroviral transduction. GFP-expressing or BrdU-prelabelled neural progenitor cells were grafted as neurospheres directly into the acutely injured rat cervical spinal cord. Animals with lesions only served as controls. Three weeks postoperatively, grafted neural progenitor cells integrated along axonal profiles surrounding the lesion site. In contrast to observations in culture, grafted neural progenitor cells differentiated only into astro- and oligodendroglial lineages, supporting the notion that the adult spinal cord provides molecular cues for glial, but not for neuronal, differentiation. This study demonstrates that adult neural progenitor cells will survive after transplantation into the acutely injured spinal cord. The observed oligodendroglial and astroglial differentiation and integration along axonal pathways represent important prerequisites for potential remyelination and support of axonal regrowth.  相似文献   

20.
Zhang SC  Goetz BD  Duncan ID 《Glia》2003,41(2):191-198
To evaluate the functional consequence of microglial activation in vivo, oligodendroglial progenitors were transplanted into the spinal cord of Long Evans shaker, a myelin mutant rat in which myelin defects are associated with progressive microglial activation. Cells grafted into neonatal rats at the initiation of gliosis successfully myelinated axons. However, cells transplanted during peak microglial activation did not lead to myelination due to death of the grafted cells within 3 days after transplantation. Pretreatment of these animals with minocycline, a tetracycline derivative, resulted in cell survival and myelination by the grafted cells. In culture, minocycline did not affect the survival, proliferation, or differentiation of oligodendroglial progenitors. Hence, minocycline likely modulates the function of reactive glia in vivo to promote the survival and myelination of transplanted oligodendroglial progenitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号