首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
目的慢性糖皮质激素治疗可能导致认知和情感变化,这或许是由于糖皮质激素对海马神经发生及细胞增殖的抑制作用造成。帕罗西汀是一种选择性血清素重摄取抑制剂,临床常用作减轻抑郁症状,近几年来发现它能促进海马神经发生。本研究探讨帕罗西汀与慢性糖皮质激素的相互作用。方法成年大鼠被分成四组,分别给予芝麻油、皮质酮、帕罗西汀或皮质酮和帕罗西汀十四天。溴脱氧尿嘧啶核苷(5-bromo-2-deoxyuridine,BrdU)免疫组化法被用于定量齿状回的细胞增殖。结果皮质酮抑制了海马的细胞增殖,帕罗西汀增加了海马的细胞增殖。同时给药组还显示帕罗西汀能逆转皮质酮的抑制作用。结论本研究结果对防止海马在类固醇治疗以后的损害或许有临床意义。  相似文献   

2.
帕罗西汀对皮质酮抑制成年大鼠海马细胞增殖的调制作用   总被引:1,自引:0,他引:1  
目的慢性糖皮质激素治疗叮能导致认知和情感变化,这或许是由于糖皮质激素对海马神经发牛肢细胞增殖的抑制作用造成。帕罗西汀是一种选择性血清素重摄取抑制剂,临床常用作减轻抑郁症状,近几年来发现它能促进海马神经发生。本研究探讨帕罗西汀与慢性糖皮质激素的相耳作用。方法成年大鼠被分成四绀,分别给予芝麻油、皮质酮、帕罗西汀或皮质酮和帕罗西汀十四天。溴脱氧尿嘧啶核苷(5-bromo-2-deoxyuridine,BrdU)免疫组化法被用于定量齿状回的细胞增殖。结果皮质酮抑制了海马的细胞增殖,帕罗西汀增加了海马的细胞增殖。同时给药组还显示帕罗西汀能逆转皮质酮的抑制作用。结论本研究结果对防止海码在类同醇治疗以后的损害或许有临床意义。  相似文献   

3.
The endocannabinoid ligand 2‐arachidonoylglycerol (2‐AG) is inactivated primarily by monoacylglycerol lipase (MAGL). We have shown recently that chronic treatments with MAGL inhibitor JZL184 produce antidepressant‐ and anxiolytic‐like effects in a chronic unpredictable stress (CUS) model of depression in mice. However, the underlying mechanisms remain poorly understood. Adult hippocampal neurogenesis has been implicated in animal models of anxiety and depression and behavioral effects of antidepressants. We tested whether CUS and chronic JZL184 treatments affected adult neurogenesis and synaptic plasticity in the dentate gyrus (DG) of mouse hippocampus. We report that CUS induced depressive‐like behaviors and decreased the number of bromodeoxyuridine‐labeled neural progenitor cells and doublecortin‐positive immature neurons in the DG, while chronic JZL184 treatments prevented these behavioral and cellular deficits. We also investigated the effects of CUS and chronic JZL184 on a form long‐term potentiation (LTP) in the DG known to be neurogenesis‐dependent. CUS impaired LTP induction, whereas chronic JZL184 treatments restored LTP in CUS‐exposed mice. These results suggest that enhanced adult neurogenesis and long‐term synaptic plasticity in the DG of the hippocampus might contribute to antidepressant‐ and anxiolytic‐like behavioral effects of JZL184. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
Adult‐born granule cells in the mammalian dentate gyrus have long been implicated in hippocampal dependent spatial learning and behavioral effects of chronic antidepressant treatment. Although recent anatomical and functional evidence indicates a dissociation of the dorsal and ventral regions of the hippocampus, it is not known if adult neurogenesis within each region specifically contributes to distinct functions or whether adult‐born cells along the entire dorsoventral axis are required for these behaviors. We examined the role of distinct subpopulations of adult‐born hippocampal granule cells in learning‐ and anxiety‐related behaviors using low‐dose focal x‐irradiation directed specifically to the dorsal or ventral dentate gyrus. Our findings indicate a functional dissociation between adult‐born neurons along the longitudinal axis of the dentate gyrus wherein new neurons in the dorsal dentate gyrus are required for timely acquisition of contextual discrimination while immature neurons in the ventral dentate gyrus are necessary for anxiolytic/antidepressant‐related effects of fluoxetine. Interestingly, when contexts are presented with altered temporal cues, or fluoxetine is administered alongside chronic glucocorticoid treatment, this dissociation is abrogated such that adult‐born neurons across the entire dorsoventral extent of the dentate gyrus appear to contribute to these behaviors. Our results suggest that individual subpopulations of adult‐born hippocampal neurons may be sufficient to mediate distinct behaviors in certain conditions, but are required to act in concert in more challenging situations. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
Agomelatine is a novel antidepressant which acts as a melatonergic (MT1/MT2) receptor agonist and serotonergic (5‐HT2C) receptor antagonist. The antidepressant properties of agomelatine have been demonstrated in animal models as well as in clinical studies. Several preclinical studies reported agomelatine‐induced effects on brain plasticity, mainly under basal conditions in healthy animals. Yet, it is important to unravel agomelatine‐mediated changes in the brain affected by psychopathology or exposed to conditions that might predispose to mood disorders. Since stress is implicated in the etiology of depression, it is valid to investigate antidepressant‐induced effects in animals subjected to chronic stress. In this context, we sought to determine changes in the brain after agomelatine treatment in chronically stressed rats. Adult male rats were subjected to footshock stress and agomelatine treatment for 21 consecutive days. Rats exposed to footshock showed a robust increase in adrenocorticotropic hormone (ACTH) and corticosterone. Chronic agomelatine treatment did not markedly influence this HPA‐axis response. Whereas chronic exposure to daily footshock stress reduced c‐Fos expression in the hippocampal dentate gyrus, agomelatine treatment reversed this effect and normalized neuronal activity to basal levels. Moreover, chronic agomelatine administration was associated with enhanced hippocampal cell proliferation and survival in stressed but not in control rats. Furthermore, agomelatine reversed the stress‐induced decrease in doublecortin expression in the dentate gyrus. Taken together, these data show a beneficial action of agomelatine in the stress‐compromised brain, where it restores stress‐affected hippocampal neuronal activity and promotes adult hippocampal neurogenesis.  相似文献   

6.
Neurogenesis is a well‐characterized phenomenon within the dentate gyrus (DG) of the adult hippocampus. Aging and chronic degenerative disorders have been shown to impair hippocampal neurogenesis, but the consequence of chronic inflammation remains controversial. In this study the chronic experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis was used to investigate the long‐term effects of T cell–mediated central nervous system inflammation on hippocampal neurogenesis. 5‐Bromodeoxyuridine (BrdU)‐labeled subpopulations of hippocampal cells in EAE and control mice (coexpressing GFAP, doublecortin, NeuN, calretinin, and S100) were quantified at the recovery phase, 21 days after BrdU administration, to estimate alterations on the rate and differentiation pattern of the neurogenesis process. The core features of EAE mice DG are (i) elevated number of newborn (BrdU+) cells indicating vigorous proliferation, which in the long term subsided; (ii) enhanced migration of newborn cells into the granule cell layer; (iii) increased level of immature neuronal markers (including calretinin and doublecortin); (iv) trending decrease in the percentage of newborn mature neurons; and (v) augmented gliogenesis and differentiation of newborn neural precursor cells (NPCs) to mature astrocytes (BrdU+/S100+). Although the inflammatory environment in the brain of EAE mice enhances the proliferation of hippocampal NPCs, in the long term neurogenesis is progressively depleted, giving prominence to gliogenesis. The discrepancy between the high number of immature cells and the low number of mature newborn cells could be the result of a caused defect in the maturation pathway. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
Cannabinoid exposure during adolescence has adverse effects on neuroplasticity, emotional behavior, cognition, and reward sensitivity in adult rats. We investigated whether escalating doses of the cannabinoid receptor 1 (CB1R) agonist, HU‐210, in adolescence would affect adult hippocampal neurogenesis and behavioral processes putatively modulated by hippocampal neurogenesis, in adult male and female Sprague‐Dawley rats. Escalating doses of HU‐210 (25, 50, and 100 µg/kg), or vehicle were administered from postnatal day (PND) 35 to 46. Animals were left undisturbed until PND 70, when they were treated with 5‐bromo‐2‐deoxyuridine (BrdU; 200 mg/kg) and perfused 21 days later to examine density of BrdU‐ir and BrdU/NeuN cells in the dentate gyrus. In another cohort, hypothalamic‐pituitary‐adrenal (HPA) axis reactivity to an acute restraint stress (30 min; PND 75) and behavioral sensitization to d‐amphetamine sulfate (1‐2 mg/kg; PND 105‐134) were assessed in adulthood. Adolescent HU‐210 administration suppressed the density of BrdU‐ir cells in the dentate gyrus in adult male, but not adult female rats. Adolescent HU‐210 administration also induced significantly higher peak corticosterone levels and reminiscent of the changes in neurogenesis, this effect was more pronounced in adult males than females. However, adolescent cannabinoid treatment resulted in significantly higher stereotypy scores in adult female, but not male, rats. Thus, adolescent CB1R activation suppressed hippocampal neurogenesis and increased stress responsivity in adult males, but not females, and enhanced amphetamine sensitization in adult female, but not male, rats. Taken together, increased CB1R activation during adolescence results in sex‐dependent, long‐term, changes to hippocampal structure and function, an effect that may shed light on differing vulnerabilities to developing disorders following adolescent cannabinoid exposure, based on sex. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
Cerebral dysfunctions, including a high incidence of depression, are common findings in human type 1 diabetes mellitus. An association between depression and defective hippocampal neurogenesis has been proposed and, in rodents, antidepressant therapy restores neuronal proliferation in the dentate gyrus. Hippocampal neurogenesis is also deficient in diabetic mice, which led us to study whether the selective serotonin reuptake inhibitor fluoxetine influences cell proliferation in streptozotocin-diabetic animals. Diabetic and control C57BL/6 mice received fluoxetine (10 mg/kg/day, i.p., 10 days) and dentate gyrus cell proliferation was measured after a single injection of 5-bromo-2'-deoxyuridine (BrdU). Diabetic mice showed reduced cell proliferation. Fluoxetine treatment, although having no effect in controls, corrected this parameter in diabetic mice. The phenotype of newly generated cells was analysed by confocal microscopy after seven daily BrdU injections, using Tuj-1/beta-III tubulin as a marker for immature neurones and glial fibrillary acidic protein for astrocytes. In controls, the proportion of Tuj-1-BrdU-positive cells over total BrdU cells was approximately 70%. In vehicle-treated diabetic mice, immature neurones decreased to 56% and fluoxetine brought this proportion back to control values without affecting astrocytes. Therefore, fluoxetine preferentially increased the proliferation of cells with a neuronal phenotype. In addition, neurones were counted in the hilus of the dentate gyrus; a 30% decrease was found in diabetic mice compared with controls, whereas this neuronal loss was prevented by fluoxetine. In conclusion, fluoxetine treatment restored neuroplasticity-related hippocampal alterations of diabetic mice. These findings may be potentially important to counteract diabetes-associated depression in humans.  相似文献   

9.
10.
Adult neurogenesis in the dentate gyrus is assuming an increasingly important role in supporting hippocampal-dependent learning and the modulation of mood and anxiety. Moreover, injury to the developing postnatal dentate gyrus has profound effects on neurogenesis and hippocampal learning throughout life. Organotypic hippocampal slice cultures represent an attractive model for studying neurogenesis both in the early postnatal and adult hippocampus, as they retain much of their anatomical and functional circuitry in vitro. Ongoing neurogenesis has been recently demonstrated in organotypic hippocampal slice cultures. However, cell proliferation, one of the critical components of neurogenesis, has yet to be characterized in this culture system. We examined single-pulse S-phase bromo-deoxyuridine (BrdU) labeling in the dentate granule layer with respect to the septotemporal position of origin of the slice culture, the medium the cultures were grown in, and the time the cultures were maintained in vitro up to 14 days, when they are believed to have matured to a near adult state. Using single 10-microm sections through a culture as our reference volume, we report significant effects of septotemporal position on the number of granule layer cells and the number of cells in S-phase, as estimated by short-survival (2 hours) BrdU studies. We report a declining rate of BrdU incorporation, evidence of significant structural changes within the granule cell layer, and differences in cell death between culture media over the first 14 days in vitro. We report caution with the use of BrdU cell density and changes in cell number to indirectly estimate proliferation.  相似文献   

11.
Recent evidence suggests that wheel running can abolish conditioned place preference (CPP) for cocaine in mice. Running significantly increases the number of new neurons in the hippocampus, and new neurons have been hypothesised to enhance plasticity and behavioral flexibility. Therefore, we tested the hypothesis that increased neurogenesis was necessary for exercise to abolish cocaine CPP. Male nestin–thymidine kinase transgenic mice were conditioned with cocaine, and then housed with or without running wheels for 32 days. Half of the mice were fed chow containing valganciclovir to induce apoptosis in newly divided neurons, and the other half were fed standard chow. For the first 10 days, mice received daily injections of bromodeoxyuridine (BrdU) to label dividing cells. On the last 4 days, mice were tested for CPP, and then euthanized for measurement of adult hippocampal neurogenesis by counting the number of BrdU‐positive neurons in the dentate gyrus. Levels of running were similar in mice fed valganciclovir‐containing chow and normal chow. Valganciclovir significantly reduced the numbers of neurons (BrdU‐positive/NeuN‐positive) in the dentate gyrus of both sedentary mice and runner mice. Valganciclovir‐fed runner mice showed similar levels of neurogenesis as sedentary, normal‐fed controls. However, valganciclovir‐fed runner mice showed the same abolishment of CPP as runner mice with intact neurogenesis. The results demonstrate that elevated adult hippocampal neurogenesis resulting from running is not necessary for running to abolish cocaine CPP in mice.  相似文献   

12.
Fluoxetine, a selective serotonin‐reuptake inhibitor (SSRI), is known to induce structural rearrangements and changes in synaptic transmission in hippocampal circuitry. In the adult hippocampus, structural changes include neurogenesis, dendritic, and axonal plasticity of pyramidal and dentate granule neurons, and dedifferentiation of dentate granule neurons. However, much less is known about how chronic fluoxetine affects these processes along the septotemporal axis and during the aging process. Importantly, studies documenting the effects of fluoxetine on density and distribution of spines along different dendritic segments of dentate granule neurons and CA1 pyramidal neurons along the septotemporal axis of hippocampus in adulthood and during aging are conspicuously absent. Here, we use a transgenic mouse line in which mature dentate granule neurons and CA1 pyramidal neurons are genetically labeled with green fluorescent protein (GFP) to investigate the effects of chronic fluoxetine treatment (18 mg/kg/day) on input‐specific spine remodeling and mossy fiber structural plasticity in the dorsal and ventral hippocampus in adulthood and middle age. In addition, we examine levels of adult hippocampal neurogenesis, maturation state of dentate granule neurons, neuronal activity, and glutamic acid decarboxylase‐67 expression in response to chronic fluoxetine in adulthood and middle age. Our studies reveal that while chronic fluoxetine fails to augment adult hippocampal neurogenesis in middle age, the middle‐aged hippocampus retains high sensitivity to changes in the dentate gyrus (DG) such as dematuration, hypoactivation, and increased glutamic acid decarboxylase 67 (GAD67) expression. Interestingly, the middle‐aged hippocampus shows greater sensitivity to fluoxetine‐induced input‐specific synaptic remodeling than the hippocampus in adulthood with the stratum‐oriens of CA1 exhibiting heightened structural plasticity. The input‐specific changes and circuit‐level modifications in middle‐age were associated with modest enhancement in contextual fear memory precision, anxiety‐like behavior and antidepressant‐like behavioral responses. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
Antidepressant medication and electroconvulsive therapy stabilize mood symptoms and increase hippocampal neurogenesis. We examined whether lamotrigine, suggested to give rise to mood-stabilizing and antidepressant effects in addition to its antiepileptic properties, also increases the number of newborn cells in rat hippocampus. Rats (on day P21) received lamotrigine, valproate, or saline intraperitoneally once daily for 7 days. All animals received four intraperitoneal injections of bromodeoxyuridine (BrdU) on day P28 and were sacrificed the next day. Quantification of BrdU-labeled cells in the granule cell layer of the dentate gyrus showed an increased number of newborn cells in rats receiving lamotrigine (42.6 ± 3.5 cells/slice) compared with valproate (31.6 ± 2.8) and controls (32.2 ± 3.1; P<0.05). The increased number of BrdU-labeled cells suggests increased neurogenesis, possibly explaining the mood-stabilizing and antidepressant effects of lamotrigine.  相似文献   

14.
Major depression is often associated with elevated glucocorticoid levels. High levels of glucocorticoids reduce neurogenesis in the adult rat hippocampus. Electroconvulsive seizures (ECS) can enhance neurogenesis, and we investigated the effects of ECS in rats where glucocorticoid levels were elevated in order to mimic conditions seen in depression. Rats given injections of corticosterone or vehicle for 21 days were at the end of this period treated with either a single or five daily ECSs. Proliferating cells were labelled with bromodeoxyuridine (BrdU). After 3 weeks, BrdU-positive cells in the dentate gyrus were quantified and analyzed for co-labelling with the neuronal marker neuron-specific nuclear protein (NeuN). In corticosterone-treated rats, neurogenesis was decreased by 75%. This was counteracted by a single ECS. Multiple ECS further increased neurogenesis and no significant differences in BrdU/NeuN positive cells were detected between corticosterone- and vehicle-treated rats given five ECS. Approximately 80% of the cells within the granule cell layer and 10% of the hilar cells were double-labelled with BrdU and NeuN. We therefore conclude that electroconvulsive seizures can increase hippocampal neurogenesis even in the presence of elevated levels of glucocorticoids. This further supports the hypothesis that induction of neurogenesis is an important event in the action of antidepressant treatment.  相似文献   

15.
BACKGROUND: Repetitive transcranial magnetic stimulation is increasingly used as a therapeutic tool in psychiatry and has been demonstrated to attenuate the activity of the stress hormone system. Stress-induced structural remodeling in the adult hippocampus may provide a cellular basis for understanding the impairment of neural plasticity in depressive illness. Accordingly, reversal of structural remodeling might be a desirable goal for antidepressant therapy. The present study investigated the effect of chronic psychosocial stress and concomitant repetitive transcranial magnetic stimulation treatment on stress hormone regulation and hippocampal neurogenesis. METHODS: Adult male rats were submitted to daily psychosocial stress and repetitive transcranial magnetic stimulation (20 Hz) for 18 days. Cell proliferation in the dentate gyrus was quantified by using BrdU immunohistochemistry, and both the proliferation rate of progenitors and the survival rate of BrdU-labeled cells were evaluated. To characterize the activity of the hypothalamic-pituitary-adrenocortical system, plasma corticotropin and corticosterone concentrations were measured. RESULTS: Chronic psychosocial stress resulted in a significant increase of stress hormone levels and potently suppressed the proliferation rate and survival of the newly generated hippocampal granule cells. Concomitant repetitive transcranial magnetic stimulation treatment normalized the stress-induced elevation of stress hormones; however, despite the normalized activity of the hypothalamic-pituitary-adrenocortical system, the decrement of hippocampal cell proliferation was only mildly attenuated by repetitive transcranial magnetic stimulation, while the survival rate of BrdU-labeled cells was further suppressed by the treatment. CONCLUSIONS: These results support the notion that attenuation of the hypothalamic-pituitary-adrenocortical system is an important mechanism underlying the clinically observed antidepressant effect of repetitive transcranial magnetic stimulation, whereas this experimental design did not reveal beneficial effects of repetitive transcranial magnetic stimulation on adult hippocampal neurogenesis.  相似文献   

16.
目的 探讨N-Myc下游调节基因2(N-Myc downstream regulated gene 2,NDRG2)与癫痫发作后海马齿状回神经发生的关系。方法 C57BL/6小鼠20只,随机分为癫痫组和对照组,每组又分为癫痫造模后1和7 d两个时间点,每个时间点5只,通过蛋白免疫印迹检测癫痫后海马齿状回NDRG2蛋白相对表达水平和mRNA相对表达水平变化; 使用双皮质素(DCX)染色标记未成熟神经元,神经巢蛋白(Nestin)标记神经干细胞,神经核蛋白(NeuN)标记成熟神经元,观察NDRG2对海马齿状回神经干细胞增殖影响; 采用RT-PCR检测发状分裂相关增强子1(hairy and enhancer of split 1,Hes 1)、NDRG2 mRNA相对表达表达水平,并分析两者之间的相关性; 观察NDRG2参与癫痫发作后神经发生的可能机制。结果 癫痫组与对照组比较,DCX、Nestin、NeuN、Hes1、NDRG2蛋白相对表达水平在1和7 d这2个时间点有显著性增高,并随时间逐渐递增。结论 癫痫发作后海马NDRG2蛋白相对表达水平增高,与癫痫发作后海马齿状回的神经细胞增值时间具有一致性和相关性,NDRG2可能参与癫痫发作后海马齿状回的神经发生过程; 同时发现海马NDRG2表达增加和Hes1分子表达增加具有相关性,故推测NDRG2可能通过Hes1参与癫痫发作后海马齿状回的神经发生。  相似文献   

17.
There is growing evidence that stress causes a decrease of neurogenesis in the dentate gyrus and antidepressant treatment in turn stimulates the cell proliferation in the dentate gyrus. This has led to the hypothesis that a decreased neurogenesis might be linked to the pathophysiology of major depression. The article reviews the relationship of depressive-like behavior and neurogenesis in three animal models of depression with high validity: learned helplessness, chronic mild stress and chronic psychosocial stress of the tree shrew. All animal models provide evidence that stress which can lead to depressive-like behavior, in parallel causes a decrease of neurogenesis; vice versa, antidepressant treatment is able to revert not only behavioral changes but also to normalize neurogenesis. But the animal models argue against the notion that decreases of neurogenesis are the cause or the consequence of depressive-like behavior since depressive-like behavior can occur without impairments in neurogenesis and decreasing neurogenesis does not neccessarily lead to depressive-like behavior. This suggests that neurogenesis does not directly control affect but is tightly connected to the modulation of affect by stress and antidepressant measures.  相似文献   

18.
BackgroundVagus nerve stimulation (VNS) has been introduced as a therapeutic option for treatment-resistant depression. The neural and chemical mechanisms responsible for the effects of VNS are largely unclear.MethodsBilateral removal of the olfactory bulbs (OBX) is a validated animal model in depression research. We studied the effects of vagus nerve stimulation (VNS) on disturbed one-way active avoidance learning and neurogenesis in the hippocampal dentate gyrus of rats.ResultsAfter a stimulation period of 3 weeks, OBX rats acquired the learning task as controls. In addition, the OBX-related decrease of neuronal differentiated BrdU positive cells in the dentate gyrus was prevented by VNS.ConclusionsThis suggests that chronic VNS and changes in hippocampal neurogenesis induced by VNS may also account for the amelioration of behavioral deficits in OBX rats. To the best of our knowledge, this is the first report on the restorative effects of VNS on behavioral function in an animal model of depression that can be compared with the effects of antidepressants.  相似文献   

19.
Electroconvulsive stimulation (ECS) is one of the strongest stimulators of hippocampal neurogenesis in rodents that represents a plausible mechanism for the efficacy of electroconvulsive therapy (ECT) in major depressive disorder. Using design‐based stereological cell counting, we recently documented an initial 2.6‐fold increase in neurogenesis following a clinical relevant schedule of ECS, a treatment also rescuing depression‐like behavior in rats. However, these results gave no demonstration of the longevity of newly generated neurons. The present study is a direct continuation of the previous work aiming to test the hypothesis that rats subjected to ECS in combination with chronic restraint stress (CRS) display increased formation of new hippocampal neurons, which have a potential for long‐term survival. Furthermore, using mediation analysis, we tested if an ECS‐induced increase in neurogenesis facilitates the behavioral outcome of the forced swim test (FST), an animal model of depression. The results showed that ECS in conjunction with CRS stimulates hippocampal neurogenesis, and that a significant quantity of the newly formed hippocampal neurons survives up to 12 months. The new BrdU‐positive neurons showed time‐dependent attrition of ~40% from day 1 to 3 months, with no further decline between 3 and 12 months. ECS did not affect the number of pre‐existing dentate granule neurons or the volume of the dentate granule cell layer, suggesting no damaging effect of the treatment. Finally, we found that, while ECS increases neurogenesis, this formation of new neurons was not associated to ameliorated immobility in the FST. This implies that other ECS‐induced effects than neurogenesis must be part of mediating the antidepressant action of ECS. Taken together, the results of the present study contribute to the basic understanding of the neurogenic effects of ECT, and demonstrate that ECS, neurogenesis and anti‐depressant behavior are not directly linked. © 2016 Wiley Periodicals, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号