首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
丙型肝炎病毒(hepatitis C virus,HCV)是引起慢性肝炎并进而发展为肝硬化和肝细胞癌的主要病原体之一。目前,临床上采用α-干扰素(IFN-α)和利巴韦林(RBV)联合用药治疗丙型肝炎,但有效率仅为40%~50%。寻找HCV特定靶向抗病毒治疗药物是抗HCV研究的重要方向,相应靶点包括NS2和NS3蛋白酶,NS4A、NS4B、NS5A和NS5B,其中以NS5B RNA依赖性RNA聚合酶(NS5B RdRp)为靶标的抗HCV药物研究近年来颇受关注。本文在介绍NS5B及NS5B RdRp结构和功能的基础上,总结归纳以NS5B RdRp为靶点的HCV特定靶向抗病毒治疗药物研究的主要策略,以及近年来相关NS5BRdRp抑制剂的研究进展。  相似文献   

2.
Infecting gastric epithelial cells with Helicobacter pylori (H. pylori) has been shown to induce interleukin-8 (IL-8) production, but the signal transduction mechanism leading to IL-8 production is not defined clearly. In the present study, we investigated the molecular mechanism responsible for H. pylori-induced IL-8 release in human gastric epithelial cells. IL-8 levels in culture supernatants were determined by an enzyme linked-immunosorbent assay. Extracellular signal-regulated kinase (ERK) activity was tested using an in vitro kinase assay, which measured the incorporation of [gamma-33P]ATP into a synthetic peptide that is a specific ERK substrate. ERK phosphorylation and IkappaBalpha degradation by H. pylori infection were assessed by western blotting. In MKN45 cells, H. pylori-induced IL-8 release in a time-dependent manner. This IL-8 release was abolished by treatment with intracellular Ca2+ chelators (BAPTA-AM and TMB-8) but not by EGTA or nifedipine. The Ca2+ ionophore A23187 also induced IL-8 release to an extent similar to that of H. pylori infection. Calmodulin inhibitors (W7 and calmidazolium) and tyrosine kinase inhibitors (genistein and ST638) completely blocked IL-8 release by H. pylori and A23187. PD98059, an ERK pathway inhibitor, completely abolished H. pylori-induced IL-8 release. Moreover, BAPTA-AM, calmidazolium, and genistein, but not nifedipine, suppressed the ERK activation induced by H. pylori infection. PD98059 as well as MG132, an NF-kappaB pathway inhibitor, blocked both IL-8 production and degradation of IkappaBalpha induced by H. pylori infection, whereas only PD98059 inhibited ERK activity in response to H. pylori. There was no significant difference between IL-8 production induced by the cagA positive wild-type strain and the cagA negative isogenic mutant strain of H. pylori; therefore, CagA is not involved in the IL-8 production pathway. H. pylori-induced IL-8 production is dominantly regulated by Ca2+/calmodulin signaling, and ERK plays an important role in signal transmission for the efficient activation of H. pylori-induced NF-kappaB activity, resulting in IL-8 production.  相似文献   

3.
Chronic hepatitis C virus (HCV) infection is responsible for development of liver cirrhosis and hepatocellular carcinoma. In addition to PEGylated interferon-α, ribavirin, and HCV NS3 protease inhibitors, recently identified HCV NS5A inhibitors such as BMS-790052 showed a great promise in clinical trials as another new class of direct-acting anti-HCV therapeutics with a distinct mechanism of action. This clinical proof-of-concept study with NS5A inhibitors demonstrated that small molecules targeting a viral protein without any known enzymatic activity can also have profound antiviral effects. In conclusion, NS5A inhibitors will serve as a valuable component of future therapy for HCV patients.  相似文献   

4.
PSI-353661, a phosphoramidate prodrug of 2′-deoxy-2′-fluoro-2′-C-methylguanosine-5′-monophosphate, is a highly active inhibitor of genotype 1a, 1b, and 2a HCV RNA replication in the replicon assay and of genotype 1a and 2a infectious virus replication. PSI-353661 is active against replicons harboring the NS5B S282T or S96T/N142T amino acid alterations that confer decreased susceptibility to nucleoside/tide analogs as well as mutations that confer resistance to non-nucleoside inhibitors of NS5B. Replicon clearance studies show that PSI-353661 was able to clear cells of HCV replicon RNA and prevent a rebound in replicon RNA. PSI-353661 showed no toxicity toward bone marrow stem cells or mitochondrial toxicity. The metabolism to the active 5′-triphosphate involves hydrolysis of the carboxyl ester by cathepsin A (Cat A) and carboxylesterase 1 (CES1) followed by a putative nucleophilic attack on the phosphorus by the carboxyl group resulting in the elimination of phenol and the alaninyl phosphate metabolite, PSI-353131. Histidine triad nucleotide-binding protein 1 (Hint 1) then removes the amino acid moiety, which is followed by hydrolysis of the methoxyl group at the O6-position of the guanine base by adenosine deaminase-like protein 1 (ADAL1) to give 2′-deoxy-2′-fluoro-2′-C-methylguanosine-5′-monophosphate. The monophosphate is phosphorylated to the diphosphate by guanylate kinase. Nucleoside diphosphate kinase is the primary enzyme involved in phosphorylation of the diphosphate to the active triphosphate, PSI-352666. PSI-352666 is equally active against wild-type NS5B and NS5B containing the S282T amino acid alteration.  相似文献   

5.
Background: Chronic hepatitis C virus (HCV) infection is a main cause of cirrhosis of the liver and hepatocellular carcinoma. The standard of care is a combination of pegylated interferon with ribavirin, a regimen that has undesirable side effects and is frequently ineffective. Compounds targeting HCV protease and polymerase are in late-stage clinical trials and have been extensively reviewed elsewhere. Objective: To review and evaluate the progress towards finding novel HCV antivirals targeting HCV proteins beyond the already precedented NS3 protease and NS5B polymerase. Methods: Searches of CAplus and Medline databases were combined with information from key conferences. This review focuses on NS2/3 serine protease, NS3 helicase activity and the non-structural proteins 4A, 4B and 5A. Conclusions: Use of the replicon model of HCV replication and biochemical assays of specific targets has allowed screening of vast libraries of compounds, but resulted in clinical candidates from only NS4A and NS5A. The field is hindered by a lack of good chemical matter that inhibits the remaining enzymes from HCV, and a lack of understanding of the functions of non-structural proteins 4A, 4B and 5A in the replication of HCV.  相似文献   

6.
7.
丙型肝炎病毒(hepatitis C virus,HCV)是引起慢性肝炎的主要病原体之一,主要通过血源传播,严重危害人类的健康,寻找有效的抗病毒药物具有重要意义。随着HCV复制过程中一些重要蛋白以及这些蛋白与相关配体或抑制剂的精确三维结构的解析,对这些蛋白的三维结构进行设计和筛选,成为目前开发治疗HCV感染药物的重要手段。NS5BRNA聚合酶是HCV复制过程中的关键酶,是研究抗HCV病毒药物的一个重要靶点。本文以NS5B的晶体结构为基础,用晶体浸泡的方法进行NS5B蛋白的抑制剂筛选,得到了小分子抑制剂与NS5B蛋白的精确三维结构,从原子水平上阐释了抑制剂对HCVNS5B蛋白的抑制机理。  相似文献   

8.
活性氧与内质网应激   总被引:3,自引:0,他引:3  
内质网(endoplasmic reticulum,ER)是细胞加工蛋白质和贮存Ca2+的主要场所,对应激极为敏感,其功能紊乱时出现错误折叠与未折叠蛋白在腔内聚集以及Ca2+平衡紊乱的状态,称为内质网应激(endoplasmic reticulum stress,ERS)。活性氧(reactive oxygen species,ROS)作为第二信使,在细胞生物学功能的调节中起着重要作用。细胞内氧化还原状态的改变促进了ROS的产生和凋亡诱导因子的激活,致使细胞凋亡的同时又加剧了细胞内氧化还原状态的改变。研究发现细胞内氧化还原水平的改变在ERS介导的细胞凋亡过程中承担重要的角色,推测ROS可能是ERS介导的凋亡通路的上游信号分子,该文就ROS与ERS之间的关系作一综述。  相似文献   

9.
The effect of carvedilol on intracellular free Ca(2+) levels ([Ca(2+)](i)) has not been explored previously. This study was aimed to examine the effect of carvedilol on Ca(2+) handling in renal tubular cells. Madin-Darby canine kidney cells were used as a model for renal tubular cells and fura-2 was used as a fluorescent Ca(2+) probe. Carvedilol increased [Ca(2+)](i) in a concentration-dependent manner with an EC(50) value of 5 microM. Extracellular Ca(2+) removal partly inhibited the [Ca(2+)](i) signals. Carvedilol-induced Ca(2+) influx was verified by measuring Mn(2+)-induced quench of fura-2 fluorescence. Carvedilol-induced store Ca(2+) release was reduced by pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor) but not with 5 microM ryanodine or 2 microM carbonylcyanide m-chlorophenylhydrazone (a mitochondrial uncoupler). Carvedilol (30 microM)-induced Ca(2+) release was not affected by inhibiting phospholipase C with 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-l)amino)hexyl)-1H-pyrrole-2,5-dione (U73122; 2 microM), but was potentiated by increasing cAMP levels or inhibiting protein kinase C. The carvedilol-induced Ca(2+) mobilization was not significantly sequestered by the endoplasmic reticulum or mitochondria. This study shows that carvedilol increased [Ca(2+)](i) in renal tubular cells by causing Ca(2+) release from the endoplasmic reticulum and other unknown stores in an inositol-1,4,5-trisphosphate-independent manner, and by inducing Ca(2+) influx. The Ca(2+) release was modulated by cAMP and protein kinase C.  相似文献   

10.
The direct-acting antivirals (DAAs) currently in development for treatment of hepatitis C fall into four categories: (i) NS3/4A protease inhibitors: ABT-450/r, faldaprevir, asunaprevir, GS-9256, vedroprevir (GS-9451), danoprevir, MK-5172, vaniprevir, sovaprevir, ACH-2684, narlaprevir and simeprevir, in addition to those that are already developed [telaprevir (Incivek®) and boceprevir (Victrelis®)], (ii) NS5A protein inhibitors: ABT-267, daclatasvir, ledipasvir, ACH-2928, ACH-3102, PPI-668, AZD-7295, MK-8742, and GSK 2336805; (iii) NS5B (nucleoside-type) polymerase inhibitors: sofosbuvir (now approved by the FDA since 6 December 2013), GS-0938, mericitabine, VX-135, ALS 2158 and TMC 649128; (iv) NS5B (non-nucleoside-type) polymerase inhibitors: VX-222, ABT-072, ABT-333, deleobuvir, tegobuvir, setrobuvir, VCH-916, VCH-759, BMS-791325 and TMC-647055. Future drug combinations will likely exist of two or more DAAs belonging to any of the 4 categories, with the aim to achieve (i) pan-genotypic hepatitis C virus (HCV) activity, (ii) little or no risk for resistance; (iii) short duration (i.e. 12 weeks) of treatment, and (iv) a sustained viral response (SVR) and definite cure of the disease.  相似文献   

11.
The Thr(149)Ala mutation in a putative protein kinase C phosphorylation site of the 5-HT(1A) receptor's second intracellular loop has been shown to affect the closing of Ca(2+) channels and Ca(2+) mobilisation without interfering with the inhibitory cAMP pathway (Mol Pharmacol 52 (1997) 164). Here, the Ca(2+) responses for a series of 5-HT(1A) agonists were compared between the wild-type (wt) and mutant Thr(149)Ala 5-HT(1A) receptor as part of a fusion protein containing a G(alpha)(15) protein. Neither the mutation nor the fusion process modified the [(3)H]WAY 100635-based ligand binding profile of the fusion proteins as compared to the wt 5-HT(1A) receptor protein. Whereas at the wt 5-HT(1A) receptor, 5-HT induced a Ca(2+) response in CHO-K1 cells via endogenous G(i/o) proteins, the Ca(2+) response to 5-HT at the mutant Thr(149)Ala 5-HT(1A) receptor was fully dependent on either the co-expression or the fusion to a recombinant G(alpha)(15) protein. Buspirone, flesinoxan and 8-OH-DPAT produced a graded partial response (26 to 62%) at the wt 5-HT(1A):G(alpha)(15) fusion protein; F 13640, 5-CT and F 14679 behaved as higher-efficacy agonists with maximal Ca(2+) responses similar to 5-HT. The maximal Ca(2+) responses at the mutant Thr(149)Ala 5-HT(1A):G(alpha)(15) fusion protein were significantly attenuated for flesinoxan and 8-OH-DPAT (-45 and -36%, respectively); the response to the other 5-HT agonists was not significantly affected. A similar effect was observed upon treatment with phorbol 12-myristate 13-acetate at the Thr(149)Ala 5-HT(1A):G(alpha)(15) fusion protein. In conclusion, the amplitude of the Ca(2+) responses induced by partial, but not that to fuller 5-HT(1A) receptor agonists, is affected by the Thr(149)Ala mutation of the 5-HT(1A):G(alpha)(15) fusion protein.  相似文献   

12.
13.
Infection with genotype 3 hepatitis C virus (HCV) is common throughout the world, however no direct-acting antiviral (DAA) has been approved to treat this genotype. We therefore attempted to develop novel genotype 3 replicons to facilitate the discovery and development of new HCV therapies. A novel Huh-7-derived cell line 1C but not Lunet cells enabled the selection of a few stable colonies of a genotype 3a subgenomic replicon (strain S52). Genotypic analysis revealed a mutation of P89L in the viral NS3 protease domain, which was confirmed to enhance genotype 3a RNA replication and enable the establishment of highly replicating luciferase-encoding replicons. Secondary adaptive mutations that further enhanced RNA replication were identified in the viral NS3 and NS4A proteins. In addition, cell lines that were cured of genotype 3a replicons demonstrated higher permissiveness specifically to genotype 3a HCV replication. These novel replicons and cell lines were then used to study the activity of approved and experimental HCV inhibitors. NS3 protease and non-nucleoside NS5B polymerase inhibitors often demonstrated substantially less antiviral activity against genotype 3a compared to genotype 1b. In contrast, nucleoside analog NS5B inhibitors and host-targeting HCV inhibitors showed comparable antiviral activity between genotypes 3a and 1b. Overall, the establishment of this novel genotype 3a replicon system, in conjunction with those derived from other genotypes, will aid the development of treatment regimens for all genotypes of HCV.  相似文献   

14.
HCV NS5A inhibitors are the backbone of directly acting antiviral treatments against the hepatitis C virus (HCV). While these therapies are generally highly curative, they are less effective in some specific HCV patient populations. In the search for broader-acting HCV NS5A inhibitors that address these needs, we explored conformational restrictions imposed by the [7,5]-azabicyclic lactam moiety incorporated into daclatasvir (1) and related HCV NS5A inhibitors. Unexpectedly, compound 5 was identified as a potent HCV genotype 1a and 1b inhibitor. Molecular modeling of 5 bound to HCV genotype 1a suggested that the use of the conformationally restricted lactam moiety might have resulted in reorientation of its N-terminal carbamate to expose a new interaction with the NS5A pocket located between amino acids P97 and Y93, which was not easily accessible to 1. The results also suggest new chemistry directions that exploit the interactions with the P97–Y93 site toward new and potentially improved HCV NS5A inhibitors.  相似文献   

15.
Involvement of protein tyrosine kinases (PTK) in lipopolysaccharide (LPS)-induced nuclear factor-kappa B (NF-kappaB) activation has been demonstrated. Studies investigated the role of PTK and the underlying mechanisms by which PTK play a role in LPS induction of pathways leading to NF-kappaB activation in macrophages. Inhibitors of PTK-genistein, herbimycin A, or AG126-blocked LPS-induced NF-kappaB activation. Genistein also blocked pervanadate-induced NF-kappaB activation. Furthermore, Src TK selective inhibitors-damnacanthal or PP1-blocked LPS-induced NF-kappaB activation over a range of nanomolar concentrations. Genistein, damnacanthal, or PP1 blocked the LPS-induced serine phosphorylation, the degradation of IkappaB-alpha, and the consequent translocation of the p65 subunit of NF-kappaB to the nucleus. In addition to serine phosphorylation of IkappaB-alpha, LPS-induced NF-kappaB activation also required tyrosine phosphorylation of IkappaB-alpha. These TK inhibitors blocked substantially LPS induction of tyrosine phosphorylation of IkappaB-alpha. Furthermore, cSrc and Lck were physically associated with IkappaB-alpha. These results suggest that the LPS-induced NF-kappaB pathways are dependent on both serine and tyrosine phosphorylation of IkappaB-alpha, and that Src TK, such as cSrc and Lck, are key components of the LPS signaling pathway through at least two different mechanisms associated with NF-kappaB activation.  相似文献   

16.
Exogenous phosphatidic acid (PA) was observed to produce a concentration-dependent increase in [Ca(2+)](i) in cultured A10 vascular smooth muscle cells. Preincubation of cells with sarcoplasmic reticulum Ca(2+)-ATPase inhibitors (cyclopiazonic acid and thapsigargin), a phospholipase C inhibitor (2-nitro-4-carboxyphenyl-N,N-diphenylcarbamate), inositol 1,4,5-trisphosphate receptor antagonists (2-aminoethoxydiphenyl borate and xestospongin), and an activator of protein kinase C (PKC) (phorbol 12-myristate 13-acetate) depressed the PA-evoked increase in [Ca(2+)](i). Although EGTA, an extracellular Ca(2+) chelator, decreased the PA-induced increase in [Ca(2+)](i), sarcolemmal Ca(2+)-channel blockers (verapamil or diltiazem) did not alter the action of PA. On the other hand, inhibitors of PKC (bisindolylmaleimide I) and G(i)-protein (pertussis toxin) potentiated the increase in [Ca(2+)](i) evoked by PA significantly. These results suggest that the PA-induced increase in [Ca(2+)](i) in vascular smooth muscle cells may occur upon the activation of phospholipase C and the subsequent release of Ca(2+) from the inositol 1,4,5-trisphosphate-sensitive Ca(2+) pool in the sarcoplasmic reticulum. This action of PA may be mediated through the involvement of PKC.  相似文献   

17.
Nucleotide-binding oligomerization domain containing proteins (Nods) are intracellular pattern recognition receptors (PRRs) that recognize conserved moieties of bacterial peptidoglycan and activate downstream signaling pathways, including NF-kappaB pathway. Here, we show that Nod2 agonist muramyldipeptide (MDP) induces Akt phosphorylation in time and dose-dependent manner. The pharmacological inhibitor of phosphatidylinositol 3-kinase (PI3K) (wortmannin) and dominant-negative forms of p85 (the regulatory subunit of PI3K) or Akt enhance, while constitutive active forms of p110 (the catalytic subunit of PI3K) or Akt inhibit, NF-kappaB activation and the target gene interleukin (IL)-8 induced by MDP. In addition, the pharmacological inhibitors of PI3K (wortmannin and LY294002) enhance phosphorylation of NF-kappaB p65 on Ser529 and Ser536 residues, which result in enhanced p65 transactivation activity. Furthermore, we show that the inhibition of PI3K by the pharmacological inhibitors prevent the inactivation of glycogen synthase kinase (GSK)-3beta, suggesting that the negative regulation of PI3K/Akt on MDP-induced NF-kappaB activation is at least in part mediated through inactivation of GSK-3beta. Taken together, our results demonstrate that PI3K/Akt pathway is activated by Nod2 agonist MDP and negatively regulates NF-kappaB pathway downstream of Nod2 activation. Our results suggest that PI3K/Akt pathway may involve in the resolution of inflammatory responses induced by Nod2 activation.  相似文献   

18.
Nuclear factor-kappaB (NF-kappaB) has been implicated in the development of drug resistance in cancer cells. We systematically examined the baseline levels of NF-kappaB activity of representative carcinoma cell lines, and the change of NF-kappaB activity in response to a challenge with four major anticancer drugs (doxorubicin, 5-fluorouracil, cisplatin, and paclitaxel). We found that the basal level of NF-kappaB activity was heterogeneous and roughly correlated with drug resistance. When challenged with various drugs, all the cell lines examined responded with a transient activation of NF-kappaB which then declined to basal level despite variation in the concentration of the agent and the timing of the treatment. In contrast to tumor necrosis factor-alpha (TNF-alpha), which activates NF-kappaB in minutes, NF-kappaB activation induced by anticancer drugs usually occurred more than 1hr after stimulation. A gradual increase of total NF-kappaB and its nuclear translocation, and cytoplasmic translocation of nuclear IkappaBalpha and its degradation were involved in this process. In particular, when cells were pretreated with common biologic modulators such as tamoxifen, dexamethasone, and curcumin, the doxorubicin-induced NF-kappaB activation was attenuated significantly. This inhibition may play a role in sensitizing cancer cells to chemotherapeutic drugs. This study has demonstrated that activation of NF-kappaB is a general cellular response to anticancer drugs, and the mechanism of activation appears to be distinct from that induced by TNF-alpha. These observations may have implications for improving the efficacy of systemic chemotherapy for cancer patients.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号