首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ubiquitin-positive, tau-negative, frontotemporal dementia (FTD) is caused by null mutations in progranulin (PGRN; HUGO gene symbol GRN), suggesting a haploinsufficiency mechanism. Since whole gene deletions also lead to the loss of a functional allele, we performed systematic quantitative analyses of PGRN in a series of 103 Belgian FTD patients. We identified in one patient (1%) a genomic deletion that was absent in 267 control individuals. The deleted segment was between 54 and 69 kb in length and comprised PGRN and two centromeric neighboring genes RPIP8 (HUGO gene symbol RUNDC3A) and SLC25A39. The patient presented clinically with typical FTD without additional symptoms, consistent with haploinsufficiency of PGRN being the only gene contributing to the disease phenotype. This study demonstrates that reduced PGRN in absence of mutant protein is sufficient to cause neurodegeneration and that previously reported PGRN mutation frequencies are underestimated.  相似文献   

2.
3.
Mutations in the valosin-containing protein (VCP) gene were recently reported to be the cause of 1%-2% of familial amyotrophic lateral sclerosis (ALS) cases. VCP mutations are known to cause inclusion body myopathy (IBM) with Paget's disease (PDB) and frontotemporal dementia (FTD). The presence of VCP mutations in patients with sporadic ALS, sporadic ALS-FTD, and progressive muscular atrophy (PMA), a known clinical mimic of inclusion body myopathy, is not known. To determine the identity and frequency of VCP mutations we screened a cohort of 93 familial ALS, 754 sporadic ALS, 58 sporadic ALS-FTD, and 264 progressive muscular atrophy patients for mutations in the VCP gene. Two nonsynonymous mutations were detected; 1 known mutation (p.R159H) in a patient with familial ALS with several family members suffering from FTD, and 1 mutation (p.I114V) in a patient with sporadic ALS. Conservation analysis and protein prediction software indicate the p.I114V mutation to be a rare benign polymorphism. VCP mutations are a rare cause of familial ALS. The role of VCP mutations in sporadic ALS, if present, appears limited.  相似文献   

4.
Null mutations in the progranulin gene (PGRN) were recently reported to cause tau-negative frontotemporal dementia linked to chromosome 17. We assessed the genetic contribution of PGRN mutations in an extended population of patients with frontotemporal lobar degeneration (FTLD) (N=378). Mutations were identified in 10% of the total FTLD population and 23% of patients with a positive family history. This mutation frequency dropped to 5% when analysis was restricted to an unbiased FTLD subpopulation (N=167) derived from patients referred to Alzheimer's Disease Research Centers (ADRC). Among the ADRC patients, PGRN mutations were equally frequent as mutations in the tau gene (MAPT). We identified 23 different pathogenic PGRN mutations, including a total of 21 nonsense, frameshift and splice-site mutations that cause premature termination of the coding sequence and degradation of the mutant RNA by nonsense-mediated decay. We also observed an unusual splice-site mutation in the exon 1 5' splice site, which leads to loss of the Kozac sequence, and a missense mutation in the hydrophobic core of the PGRN signal peptide. Both mutations revealed novel mechanisms that result in loss of functional PGRN. One mutation, c.1477C>T (p.Arg493X), was detected in eight independently ascertained familial FTLD patients who were shown to share a common extended haplotype over the PGRN genomic region. Clinical examination of patients with PGRN mutations revealed highly variable onset ages with language dysfunction as a common presenting symptom. Neuropathological examination showed FTLD with ubiquitin-positive cytoplasmic and intranuclear inclusions in all PGRN mutation carriers.  相似文献   

5.
Frontotemporal dementia (FTD) is a clinical entity grouping different diagnostic conditions. FTD can occur in a sporadic form; however in 30-50% of cases a familial form of FTD has been observed. Mutations in the TAU gene were associated to familial FTD linked to chromosome 17. Our aim was to investigated the proportion of FTD cases attributable to TAU gene mutations in an Italian clinical series. We analyzed 38 patients with FTD; of these, 13 had a positive family history of FTD. All TAU gene exons and flanking intronic regions were sequenced. In our familial FTD sample the estimation of TAU gene mutations accounted for a relative low prevalence (7.6%); based on our results we could argue the existence of other mutations in regulatory regions in the TAU gene or, on the other hand, other genes might be responsible for the most cases of familial FTD.  相似文献   

6.
Autosomal dominantly transmitted Alzheimer's disease (AD) and frontotemporal dementia (FTD) are genetically heterogeneous disorders. To date, three genes have been identified in which mutations cause early-onset autosomal dominant inherited AD: APP, PSEN1 , and PSEN2. Mutations in two genes on chromosome 17, the MAPT and the PGRN genes, are associated with autosomal dominant inherited FTD. The aim of this study was to characterize the mutation spectrum and describe genotype-phenotype correlations in families with inherited dementia. The identification of novel mutations and/or atypical genotype-phenotype correlations contributes to further characterizing the disorders. DNA-samples from the 90 index cases from a Danish referral-based cohort representing families with presumed autosomal dominant inherited AD or FTD were screened for mutations in the known genes with sequencing, denaturing high-performance liquid chromatography (DHPLC) and multiplex ligation-dependent probe amplification (MLPA) techniques. Seven presumed pathogenic mutations (two PSEN1 , one PSEN2 , one APP , one MAPT , and two PGRN ) were identified, including a novel PSEN2 mutation (V393M). No dosage aberrations were identified.  相似文献   

7.
In the last decade familial frontotemporal dementia (FFTD) has emerged as a distinct clinical disease entity characterized by clinical and genetic heterogeneity. Here, we provide an extensive clinical and genetic characterization of two Italian pedigrees presenting with FFTD (FAM047: 5 patients, 5 unaffected; FAM071: 4 patients, 11 unaffected). Genetic analysis showed a conclusive linkage (LOD score for D17S791/D17S951: 4.173) to chromosome 17 and defined a candidate region containing MAPT and PGRN genes. Recombination analysis assigned two different disease haplotypes to FAM047 and FAM071. In affected subjects belonging to both families, we identified a novel 4 bp deletion mutation in exon 7 of PGRN gene (Leu271LeufsX10) associated with a variable clinical presentation ranging from FTDP-17 to corticobasal syndrome. The age-related penetrance was gender dependent. Both mutations in MAPT and PGRN genes are associated with highly variable clinical phenotypes. Despite the profound differences in the biological functions of the encoded proteins, it is not possible to define a clinical phenotype distinguishing the disease caused by mutations in MAPT and PGRN genes.  相似文献   

8.
Frontotemporal dementia (FTD) is a clinical term encompassing dementia characterized by the presence of two major phenotypes: 1) behavioral and personality disorder, and 2) language disorder, which includes primary progressive aphasia and semantic dementia. Recently, the gene for familial frontotemporal lobar degeneration (FTLD) with ubiquitin-positive, tau-negative inclusions (FTLD-U) linked to chromosome 17 was cloned. In the present study, 62 unrelated patients from the Washington University Alzheimer's Disease Research Center and the Midwest Consortium for FTD with clinically diagnosed FTD and/or neuropathologically characterized cases of FTLD-U with or without motor neuron disease (MND) were screened for mutations in the progranulin gene (GRN; also PGRN). We discovered two pathogenic mutations in four families: 1) a single-base substitution within the 3' splice acceptor site of intron 6/exon 7 (g.5913A>G [IVS6-2A>G]) causing skipping of exon 7 and premature termination of the coding sequence (PTC); and 2) a missense mutation in exon 1 (g.4068C>A) introducing a charged amino acid in the hydrophobic core of the signal peptide at residue 9 (p.A9D). Functional analysis in mutation carriers for the splice acceptor site mutation revealed a 50% decrease in GRN mRNA and protein levels, supporting haploinsufficiency. In contrast, there was no significant difference in the total GRN mRNA between cases and controls carrying the p.A9D mutation. Further, subcellular fractionation and confocal microscopy indicate that although the mutant protein is expressed, it is not secreted, and appears to be trapped within an intracellular compartment, possibly resulting in a functional haploinsufficiency.  相似文献   

9.
Studies focusing on octapeptide repeat alteration mutations in PRNP in Alzheimer's disease (AD) and frontotemporal dementia (FTD) cohorts have been rare. We aim to screen sporadic AD and FTD patients with unknown etiology for the octapeptide repeat insertions and deletions in PRNP. Two hundred and six individuals were screened for alterations to the repeat region in the PRNP gene, including 146 sporadic AD and 60 sporadic FTD patients. Our study showed a 1.5% (3/206) occurrence of the octapeptide repeat alteration mutations in PRNP in a Chinese cohort of sporadic dementia. One late-onset FTD patient and one early-onset AD patient each had a two-octapeptide repeat deletion in PRNP, while one early-onset AD patient had a five-octapeptide repeat insertion mutation. PRNP octapeptide repeat alteration mutations are present in sporadic AD and FTD patients. The genetic investigation for PRNP octapeptide repeat alteration mutations in sporadic dementia patients should be carried out in future clinical studies.  相似文献   

10.
Frontotemporal dementia (FTD) is the second most common type of presenile dementia and the forth most common type of senile dementia, but probably the most costly due to its florid symptom characteristics. Clinically, it often presents with changes of personality, restlessness, disinhibition, and impulsiveness and the clinical features can be complicated by neurological signs, such as motor neuron signs, parkinsonism, and gait disturbances. Syndromatically, FTD can be subdivided into a group with predominating behavioural disturbances (frontal variant) and another with predominating language deterioration (temporal variant). Based on the underlying pathological changes, FTD is nosologically divided into disorders such as Pick's disease, frontotemporal lobar degeneration, corticobasal degeneration, progressive supranuclear palsy, and frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17). The cause in sporadic FTD is most often unknown, but in FTDP-17, one of the hereditary FTDs, there is a causative mutation in the tau gene. The frequency of tau-gene mutations is low in sporadic FTD and present in about 10-40% of hereditary FTD. Other types of hereditary FTD have been described, such as FTD caused by mutations in chromosome 3, chromosome 9, and a FTD syndrome can also be caused by mutations in the presenilin-1 gene. Since there is no curative, treatment of prevailing symptoms is the given alternative. Serotonergic acting drugs have been shown to alleviate behavioural symptoms.  相似文献   

11.
Inclusion body myopathy (IBM) associated with Paget disease of the bone, frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS), sometimes called IBMPFD/ALS or multi system proteinopathy, is a rare, autosomal dominant disorder characterized by progressive degeneration of muscle, brain, motor neurons, and bone with prominent TDP-43 pathology. Recently, 2 novel genes for multi system proteinopathy were discovered; heterogenous nuclear ribonucleoprotein (hnRNP) A1 and A2B1. Subsequently, a mutation in hnRNPA1 was also identified in a pedigree with autosomal dominant familial ALS. The genetic evidence for ALS and other neurodegenerative diseases is still insufficient. We therefore sequenced the prion-like domain of these genes in 135 familial ALS, 1084 sporadic ALS, 68 familial FTD, 74 sporadic FTD, and 31 sporadic IBM patients in a Dutch population. We did not identify any mutations in these genes in our cohorts. Mutations in hnRNPA1 and hnRNPA2B1 prove to be a rare cause of ALS, FTD, and IBM in the Netherlands.  相似文献   

12.
It has been recently reported that a large proportion of patients with familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are associated with a hexanucleotide (GGGGCC) repeat expansion in the first intron of C9ORF72. We have assessed 1757 Italian sporadic ALS cases, 133 from Sardinia, 101 from Sicily, and 1523 from mainland Italy. Sixty (3.7%) of 1624 mainland Italians and Sicilians and 9 (6.8%) of the 133 Sardinian sporadic ALS cases carried the pathogenic repeat expansion. None of the 619 regionally matched control samples (1238 chromosomes) carried the expansion. Twenty-five cases (36.2%) had behavioral FTD in addition to ALS. FTD or unspecified dementia was also detected in 19 pedigrees (27.5%) in first-degree relatives of ALS patients. Cases carrying the C9ORF72 hexanucleotide expansion survived 1 year less than cases who did not carry this mutation. In conclusion, we found that C9ORF72 hexanucleotide repeat expansions represents a sizeable proportion of apparent sporadic ALS in the Italian and Sardinian population, representing by far the most common mutation in Italy and the second most common in Sardinia.  相似文献   

13.
Most of the mutations in the presenilin‐1 gene (PS‐1) are associated with familial Alzheimer's disease (AD). However, certain examples can be associated with frontotemporal dementia (FTD). We performed a clinical evaluation of individuals belonging to a family with the FTD phenotype, and additional molecular studies and neuropathological assessment of the proband. The PS‐1 M146V mutation was found in the 50‐year‐old subject (the proband) with family history of early‐onset FTD. Neuropathological examination showed abundant amyloid plaques, widespread neurofibrillary pathology, Pick bodies in the hippocampus and cortex, cortical globose tangles and ubiquitin‐positive nuclear inclusions in white matter oligodendrocytes. We report a kindred with clinical features of FTD, whose proband bore the PS‐1 M146V mutation and showed diffuse Alzheimer's type pathology and Pick bodies on post‐mortem neuropathological examination. As with other mutations within the same codon, this substitution may predispose to both diseases by affecting APP and/or tau processing.  相似文献   

14.
Mutations in the UBQLN2 and SIGMAR1 genes were recently identified in X-linked dominant amyotrophic lateral sclerosis and/or frontotemporal dementia (ALS and/or FTD) and FTD and/or motor neuron disease, respectively. Subsequent studies, however, found that UBQLN2 mutations were rare, and the pathogenicity of SIGMAR1 mutation in FTD and/or motor neuron disease was controversial. In the present study, we analyzed mutations in the UBQLN2 and SIGMAR1 genes in a Korean cohort of 258 patients with familial ALS (n = 9) or sporadic (sALS; n = 258) ALS. One novel UBQLN2 variant (p.D314E) was observed in 2 patients with sALS and 5 of 727 controls indicating that this variant might be a rare polymorphism rather than a disease-causing mutation. A novel SIGMAR1 gene variant in the 3′-untranslated region (c.*58T>C) was found in 1 sALS and was absent in 727 control samples. Taken together, our data suggest that causative mutations in the UBQLN2 and SIGMAR1 genes are rare in Korean patients with either familial or sporadic ALS.  相似文献   

15.
Mutations in UBQLN2 have recently been shown to cause dominant X-linked amyotrophic lateral sclerosis (ALS) and ALS plus frontotemporal dementia (FTD). Information on their frequency in different populations is still rare, and a pure FTD phenotype has not yet been reported. Moreover, the mutational spectrum of known UBQLN2 mutations is still limited to its PXX repeat region. Based on a screening of 206 ALS and FTD patients, we here report 3 novel UBQLN2 mutations, accounting for 1.2% (2/161) ALS and 2.2% (1/45) FTD patients, including a patient with pure FTD. All mutations were located in highly conserved domains outside the PXX repeat region and not observed in 1450 ethnically matched control X-chromosomes. All affected patients presented with apparently sporadic disease. UBQLN2 mutations are rare in Central European ALS and FTD patients, but contribute significantly to patients with seemingly sporadic disease. UBQLN2 is able to cause any disease on the ALS-FTD continuum, including pure FTD. Because the pathogenic mechanism of UBQLN2 mutations is not limited to its PXX region, UBQLN2 screening in neurodegenerative patients should not be limited to this region.  相似文献   

16.
Early onset familial Alzheimer disease (FAD) has been associated with mutations in three genes, of which presenilin 1 (PSEN1) mutations are the most frequent. We reported previously a variant form of FAD, due to deletion of exon 9 of PSEN1, with spastic paralysis and rigidity. We describe a novel PSEN1 mutation in a family of Japanese origin with six affected individuals of both genders in two generations. The disease is characterized by presenile dementia, which is preceded by spastic paraparesis and apraxia. This mutation, which is predicted to cause a missense substitution of serine for glycine, occurred at codon 266 in exon 8 of PSEN1. The mutation was not found in 200 controls and 200 sporadic AD patients. On this basis alone, it seems this mutation is pathogenic. Our findings provide a new clue to the etiology of the familial early onset dementia.  相似文献   

17.
Mutations in progranulin (PGRN) are associated with frontotemporal dementia with or without parkinsonism. We describe the prominent phenotypic variability within and among eight kindreds evaluated at Mayo Clinic Rochester and/or Mayo Clinic Jacksonville in whom mutations in PGRN were found. All available clinical, genetic, neuroimaging and neuropathologic data was reviewed. Age of onset ranged from 49 to 88 years and disease duration ranged from 1 to 14 years. Clinical diagnoses included frontotemporal dementia (FTD), primary progressive aphasia, FTD with parkinsonism, parkinsonism, corticobasal syndrome, Alzheimer's disease, amnestic mild cognitive impairment, and others. One kindred exhibited maximal right cerebral hemispheric atrophy in all four affected individuals, while another had maximal left hemisphere involvement in all three of the affected. Neuropathologic examination of 13 subjects revealed frontotemporal lobar degeneration with ubiquitin-positive inclusions plus neuronal intranuclear inclusions in all cases. Age of onset, clinical phenotypes and MRI findings associated with most PGRN mutations varied significantly both within and among kindreds. Some kindreds with PGRN mutations exhibited lateralized topography of degeneration across all affected individuals.  相似文献   

18.
The hexanucleotide repeat expansion (GGGGCC) in chromosome 9 open-reading frame 72 (C9orf72) and mutations in the microtubule-associated protein tau (MAPT) and progranulin (GRN) genes are known to be associated with the main causes of familial or sporadic amyotrophic lateral sclerosis and frontotemporal dementia (FTD) in Western populations. These genetic abnormalities have rarely been studied in Asian FTD populations. We investigated the frequencies of mutations in MAPT and GRN and the C9orf72 abnormal expansion in 75 Korean FTD patients. Two novel missense variants of unknown significance in the MAPT and GRN were detected in each gene. However, neither abnormal C9orf72 expansion nor pathogenic MAPT or GRN mutation was found. Our findings indicate that MAPT, GRN, and C9orf72 mutations are rare causes of FTD in Korean patients.  相似文献   

19.
Motor neuron degeneration in amyotrophic lateral sclerosis (ALS) is familial in 10% of patients, with mutations in SOD1 and C9orf72 being the most frequent cause. There is convincing evidence for overlap between ALS and frontotemporal lobar degeneration at the genetic, pathological, and clinical level. Null mutations in progranulin (PGRN) are a frequent cause of familial frontotemporal lobar degeneration. PGRN exerts neurotrophic properties on motor neurons in vitro and in vivo. We therefore examined whether PGRN could affect disease progression in mutant SOD1 mice and rats, both established models for ALS. Overexpression of PGRN in mice and intracerebroventricular delivery of PGRN in rats did not affect onset or progression of motor neuron degeneration.  相似文献   

20.
Beckwith-Wiedemann syndrome (BWS) is a human imprinting disorder with a variable phenotype. The major features are anterior abdominal wall defects including exomphalos (omphalocele), pre- and postnatal overgrowth, and macroglossia. Additional less frequent complications include specific developmental defects and a predisposition to embryonal tumours. BWS is genetically heterogeneous and epigenetic changes in the IGF2/H19 genes resulting in overexpression of IGF2 have been implicated in many cases. Recently germline mutations in the cyclin dependent kinase inhibitor gene CDKN1C (p57KIP2) have been reported in a variable minority of BWS patients. We have investigated a large series of familial and sporadic BWS patients for evidence of CDKN1C mutations by direct gene sequencing. A total of 70 patients with classical BWS were investigated; 54 were sporadic with no evidence of UPD and 16 were familial from seven kindreds. Novel germline CDKN1C mutations were identified in five probands, 3/7 (43%) familial cases and 2/54 (4%) sporadic cases. There was no association between germline CDKN1C mutations and IGF2 or H19 epigenotype abnormalities. The clinical phenotype of 13 BWS patients with germline CDKN1C mutations was compared to that of BWS patients with other defined types of molecular pathology. This showed a significantly higher frequency of exomphalos in the CDKN1C mutation cases (11/13) than in patients with an imprinting centre defect (associated with biallelic IGF2 expression and H19 silencing) (0/5, p<0.005) or patients with uniparental disomy (0/9, p<0.005). However, there was no association between germline CDKN1C mutations and risk of embryonal tumours. No CDKN1C mutations were identified in six non-BWS patients with overgrowth and Wilms tumour. These findings (1) show that germline CDKN1C mutations are a frequent cause of familial but not sporadic BWS, (2) suggest that CDKN1C mutations probably cause BWS independently of changes in IGF2/H19 imprinting, (3) provide evidence that aspects of the BWS phenotype may be correlated with the involvement of specific imprinted genes, and (4) link genotype-phenotype relationships in BWS and the results of murine experimental models of BWS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号