首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 217 毫秒
1.
Subthreshold A‐type K+ currents (ISAs) have been recorded from the cell bodies of hippocampal and neocortical interneurons as well as neocortical pyramidal neurons. Kv4 channels are responsible for the somatodendritic ISAs. It has been proposed that neuronal Kv4 channels are ternary complexes including pore‐forming Kv4 subunits, K+ channel‐interacting proteins (KChIPs), and dipeptidyl peptidase‐like proteins (DPPLs). However, colocalization evidence was still lacking. The distribution of DPP10 mRNA in rodent brain has been reported but its protein localization remains unknown. In this study, we generated a DPP10 antibody to label DPP10 protein in adult rat brain by immunohistochemistry. Absent from glia, DPP10 proteins appear mainly in the cell bodies of DPP10(+) neurons, not only at the plasma membrane but also in the cytoplasm. At least 6.4% of inhibitory interneurons in the hippocampus coexpressed Kv4.3, KChIP1, and DPP10, with the highest density in the CA1 strata alveus/oriens/pyramidale and the dentate hilus. Colocalization of Kv4.3/KChIP1/DPP10 was also detected in at least 6.9% of inhibitory interneurons scattered throughout the neocortex. Both hippocampal and neocortical Kv4.3/KChIP1/DPP10(+) inhibitory interneurons expressed parvalbumin or somatostatin, but not calbindin or calretinin. Furthermore, we found colocalization of Kv4.2/Kv4.3/KChIP3/DPP10 in neocortical layer 5 pyramidal neurons and olfactory bulb mitral cells. Together, although DPP10 is also expressed in some brain neurons lacking Kv4 (such as parvalbumin‐ and somatostatin‐positive Golgi cells in the cerebellum), colocalization of DPP10 with Kv4 and KChIP at the plasma membrane of ISA‐expressing neuron somata supports the existence of Kv4/KChIP/DPPL ternary complex in vivo. J. Comp. Neurol. 523:608–628, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
Potassium channels are key determinants of neuronal excitability. We recently identified KChIPs as a family of calcium binding proteins that coassociate and colocalize with Kv4 family potassium channels in mammalian brain (An et al. [2000] Nature 403:553). Here, we used light microscopic immunohistochemistry and multilabel immunofluorescence labeling, together with transmission electron microscopic immunohistochemistry, to examine the subcellular distribution of KChIPs and Kv4 channels in adult rat cerebellum. Light microscopic immunohistochemistry was performed on 40-microm free-floating sections using a diaminobenzidine labeling procedure. Multilabel immunofluorescence staining was performed on free-floating sections and on 1-microm ultrathin cryosections. Electron microscopic immunohistochemistry was performed using an immunoperoxidase pre-embedding labeling procedure. By light microscopy, immunoperoxidase labeling showed that Kv4.2, Kv4.3, and KChIPs 1, 3, and 4 (but not KChIP2) were expressed at high levels in cerebellar granule cells (GCs). Kv4.2 and KChIP1 were highly expressed in GCs in rostral cerebellum, whereas Kv4.3 was more highly expressed in GCs in caudal cerebellum. Immunofluorescence labeling revealed that KChIP1 and Kv4.2 are concentrated in somata of cerebellar granule cells and in synaptic glomeruli that surround synaptophysin-positive mossy fiber axon terminals. Electron microscopic analysis revealed that KChIP1 and Kv4.2 immunoreactivity is concentrated along the plasma membrane of cerebellar granule cell somata and dendrites. In synaptic glomeruli, KChIP1 and Kv4.2 immunoreactivity is concentrated along the granule cell dendritic membrane, but is not concentrated at postsynaptic densities. Taken together, these data suggest that A-type potassium channels containing Kv4.2 and KChIP1, and perhaps also KChIP3 and 4, play a critical role in regulating postsynaptic excitability at the cerebellar mossy-fiber/granule cell synapse.  相似文献   

3.
4.
Subthreshold A‐type K+ currents (ISAs) have been recorded from the somata of nociceptors and spinal lamina II excitatory interneurons, which sense and modulate pain, respectively. Kv4 channels are responsible for the somatodendritic ISAs. Accumulative evidence suggests that neuronal Kv4 channels are ternary complexes including pore‐forming Kv4 subunits and two types of auxiliary subunits: K+ channel‐interacting proteins (KChIPs) and dipeptidyl peptidase‐like proteins (DPPLs). Previous reports have shown Kv4.3 in a subset of nonpeptidergic nociceptors and Kv4.2/Kv4.3 in certain spinal lamina II excitatory interneurons. However, whether and which KChIP and DPPL are coexpressed with Kv4 in these ISA‐expressing pain‐related neurons is unknown. In this study we mapped the protein distribution of KChIP1, KChIP2, KChIP3, DPP6, and DPP10 in adult rat dorsal root ganglion (DRG) and spinal cord by immunohistochemistry. In the DRG, we found colocalization of KChIP1, KChIP2, and DPP10 in the somatic surface and cytoplasm of Kv4.3(+) nociceptors. KChIP3 appears in most Aβ and Aδ sensory neurons as well as a small population of peptidergic nociceptors, whereas DPP6 is absent in sensory neurons. In the spinal cord, KChIP1 is coexpressed with Kv4.3 in the cell bodies of a subset of lamina II excitatory interneurons, while KChIP1, KChIP2, and DPP6 are colocalized with Kv4.2 and Kv4.3 in their dendrites. Within the dorsal horn, besides KChIP3 in the inner lamina II and lamina III, we detected DPP10 in most projection neurons, which transmit pain signal to brain. The results suggest the existence of Kv4/KChIP/DPPL ternary complexes in ISA‐expressing nociceptors and pain‐modulating spinal interneurons. J. Comp. Neurol. 524:846–873, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
Voltage-gated potassium (Kv) channels play important roles in regulating the excitability of myocytes and neurons. Kv4.2 is the primary α-subunit of the channel that produces the A-type K+ current in CA1 pyramidal neurons of the hippocampus, which is critically involved in the regulation of dendritic excitability and plasticity. K+ channel-interacting proteins, KChIPs (KChIP1–4), associate with the N-terminal of Kv4.2 and modulate the channel's biophysical properties, turnover rate and surface expression. In the present study, we investigated the role of Kv4.2 C-terminal PKA phosphorylation site S552 in the KChIP4a-mediated effects on Kv4.2 channel trafficking. We found that while interaction between Kv4.2 and KChIP4a does not require PKA phosphorylation of Kv4.2S552, phosphorylation of this site is necessary for both enhanced stabilization and membrane expression of Kv4.2 channel complexes produced by KChIP4a. Enhanced surface expression and protein stability conferred by co-expression of Kv4.2 with other KChIP isoforms did not require PKA phosphorylation of Kv4.2 S552. Finally, we identify A-kinase anchoring proteins (AKAPs) as Kv4.2 binding partners, allowing for discrete local PKA signaling. These data demonstrate that PKA phosphorylation of Kv4.2 plays an important role in the trafficking of Kv4.2 through its specific interaction with KChIP4a.  相似文献   

6.
Chung YH  Shin C  Kim MJ  Lee BK  Cha CI 《Brain research》2001,895(1-2):173-177
Voltage-gated K(+) (Kv) channels are critical for a wide variety of processes, and play an essential role in neurons. In the present study, we have demonstrated a unique pattern of expression of the six Kv1 channel subunits in the rat cerebellum, for the first time. The greatest concentration of Kv1.2 was found in the basket cell axon plexus and terminal regions around the Purkinje cells. Relatively weak immunoreactivity for Kv1.1 was also found in this area. The somatodendritic Purkinje cell areas were intensely stained with anti-Kv1.5 antibodies. In the cerebellar nuclei, the cell bodies of cerebellar output neurons showed strong Kv1.5 and Kv1.6 immunoreactivities in the nucleus medialis, interpositus and lateralis. Interestingly, Kv1.2 immunoreactivity was found in some neurons with their processes. Our immunohistochemical results may support the notion that the formation of heteromultimeric Kv channels possibly represents an important contribution to the generation of Kv channel diversity in the brain, especially in the cerebellum.  相似文献   

7.
8.
9.
1 Introduction To discover accessory subunit of the Kv4 A-type channel, three novel proteins termed Kv channel-interact- ing proteins were identified as KChIP1, KChIP2, and KChIP3, and another homologue KChIP4 was found latterly. These novel proteins turn out to have around 40% amino-acid similarity to neuronal calcium sensor-1 (NCS-1) and belong to neuronal calcium sensor (NCS) family, which consists of those EF-hand-containing Ca2 -binding pro- teins that express predominantly or …  相似文献   

10.
Objective To explore the possible role of voltage-gated potassium channel-interacting protein 1 (KChIP1) in the pathogenesis of epilepsy. Methods Sprague Dawley female adult rats were treated with pentylenettrazole (PTZ) to develop acute and chronic epilepsy models. The approximate coronal sections of normal and epilepsy rat brain were processed for immunohistochemistry. Double-labeling confocal microscopy was used to determine the coexistence of KChIP1 and gamma-aminobutyric acid (GABA). Results KChIP1 was expressed abundantly throughout adult rat brain. KChIP1 is highly co-localize with GABA transmitter in hippocampus and cerebral cortex. In the acute PTZ-induced convulsive rats, the number of KChIP 1-postive cells was significantly increased especially in the regions of CA 1 and CA3 (P 〈 0.05); whereas the chronic PTZ-induced convulsive rats were found no changes. The number of GABA-labeled and co-labeled neurons in the hippocampus appeared to have no significant alteration responding to the epilepsy-genesis treatments. Conclusion KChIP1 might be involved in the PTZ-induced epileptogenesis process as a regulator to neuronal excitability through influencing the properties of potassium channels. KChIP1 is preferentially expressed in GABAergic neurons, but its changes did not couple with GABA in the epileptic models.  相似文献   

11.
Kv3.3 proteins are pore-forming subunits of voltage-dependent potassium channels, and mutations in the gene encoding for Kv3.3 have recently been linked to human disease, spinocerebellar ataxia 13, with cerebellar and extracerebellar symptoms. To understand better the functions of Kv3.3 subunits in brain, we developed highly specific antibodies to Kv3.3 and analyzed immunoreactivity throughout mouse brain. We found that Kv3.3 subunits are widely expressed, present in important forebrain structures but particularly prominent in brainstem and cerebellum. In forebrain and midbrain, Kv3.3 expression was often found colocalized with parvalbumin and other Kv3 subunits in inhibitory neurons. In brainstem, Kv3.3 was strongly expressed in auditory and other sensory nuclei. In cerebellar cortex, Kv3.3 expression was found in Purkinje and granule cells. Kv3.3 proteins were observed in axons, terminals, somas, and, unlike other Kv3 proteins, also in distal dendrites, although precise subcellular localization depended on cell type. For example, hippocampal dentate granule cells expressed Kv3.3 subunits specifically in their mossy fiber axons, whereas Purkinje cells of the cerebellar cortex strongly expressed Kv3.3 subunits in axons, somas, and proximal and distal, but not second- and third-order, dendrites. Expression in Purkinje cell dendrites was confirmed by immunoelectron microscopy. Kv3 channels have been demonstrated to rapidly repolarize action potentials and support high-frequency firing in various neuronal populations. In this study, we identified additional populations and subcellular compartments that are likely to sustain high-frequency firing because of the expression of Kv3.3 and other Kv3 subunits.  相似文献   

12.
13.
14.
15.
Kv4.3, an A-type K+ channel, is the only channel molecule showing anterior-posterior (A-P) compartmentalization in the granular layer of mammalian cerebellum known so far. Kv4.3 mRNA has been detected from the posterior but not anterior granular layer in adult rat cerebellum. To characterize this A-P compartmentalization further, we examined Kv4.3 protein expression in rat cerebellum by immunohistochemistry at the embryonic, early postnatal and adult stages. Specificity of the Kv4.3 antibody was confirmed by both Western blot and immunoprecipitation analysis. In adulthood, Kv4.3 was detected from the somatodendritic domain of posterior granule cells, with a restriction boundary in the vermal lobule VI extending laterally to the hemispheric crus 1 ansiform lobules. At the early postnatal stage, this A-P pattern first appeared on postnatal day 8, when significant numbers of granule cells had migrated into the posterior granular layer and started to express Kv4.3. Similar Kv4.3 expression in the somatodendritic domain of post-migratory neurons in the cerebellum was also observed in basket cells, stellate cells, a subset of GABAergic deep neurons, Lugaro cells and, probably, deep Lugaro cells. However, none of them showed A-P compartmentalization. Strikingly, we found Kv4.3 in several clusters of migrating Purkinje cells with mediolateral compartmentalization. These Purkinje cells no longer expressed Kv4.3 after completing the migration. By contrasting the expression in migrating and post-migratory neurons, our results suggest that Kv4.3 may play an important role in the development of cerebellum, as well as in the mature cerebellum.  相似文献   

16.
Yan Y  Dempsey RJ  Sun D 《Brain research》2001,911(1):43-55
Na(+)-K(+)-Cl(-) cotransporter has been proposed to play an important role in the regulation of intracellular Cl(-) concentration in neurons during development. In this study, the expression pattern of the cotransporter in different regions of rat brain was examined at birth (P0), postnatal days 7 (P7), P14, P21, and adult by Western blotting analysis. In cortex, thalamus, cerebellum and striatum, the cotransporter expression level was low at P0 and significantly increased at P14 (P<0.05). The expression peaked at P21 and was maintained at the same level in adulthood. However, in hippocampus, a peak level of the cotransporter expression was detected in adult brain. The immunocytochemistry study of adult rat brain revealed that an intense staining of the Na(+)-K(+)-Cl(-) cotransporter protein was observed in dendritic processes of CA1-CA3 hippocampal pyramidal neurons. In contrast, abundant immuno-reactive signals of the cotransporter were found in somata of thalamic nucleus. Immunofluorescence double staining demonstrates that the Na(+)-K(+)-Cl(-) cotransporter was expressed in astrocytes within cortex, corpus callosum, hippocampus and cerebellum. In addition, co-localization of the cotransporter and glial fibrillary acidic protein (GFAP), or with aquaporin 4, was found in perivascular astrocytes of cortical cortex and white matter. The results indicate that a time-dependent expression of the Na(+)-K(+)-Cl(-) cotransporter protein occurs not only in cortex but also in hippocampus, striatum, thalamus and cerebellum. In addition, the cotransporter is expressed in astrocytes and perivascular astrocytes of adult rat brain.  相似文献   

17.
目的探讨血栓素A2受体(TP)在正常大鼠脑内的表达分布特点。方法正常成年SD大鼠脑组织冰冻切片,TP免疫荧光染色,TP/神经核蛋白(Neu N),TP/胶质纤维酸性蛋白(GFAP),TP/谷氨酸脱羧酶67(GAD67)免疫荧光双标染色,观察TP在脑内分布表达情况。结果 TP免疫阳性产物主要分布在扣带回皮质、皮层Ⅲ~V层、下丘和小脑的浦肯野细胞层;免疫荧光双标结果显示TP与神经元胞核特异性标记物Neu N共存,但不与星形胶质细胞标记物GFAP共存;同时,所有TP阳性神经元表达γ氨基丁酸(GABA)能神经元标记物GAD67。结论 TP表达于大鼠扣带回皮质、皮层Ⅲ~V层、下丘脑和小脑的浦肯野细胞层,主要分布于GABA能神经元,提示TP可能参与了大鼠大脑GABA能神经元的功能调节和病变过程。  相似文献   

18.
19.
We have used a porcine model of global hypoxia–ischaemia to examine the mode and extent of cell damage to the newborn brain. Apoptosis and necrosis were observed in neurons and glial cells following transient cerebral hypoxic–ischaemic injury (HII) by haematoxylin and eosin staining and by in situ end labelling (ISEL). Quantitative neuropathological analysis of the cingulate gyrus, the hippocampus and the cerebellum showed that the degree of both apoptosis and necrosis increased with the severity of injury in these brain areas. The hippocampus and cerebellar cortex were particularly sensitive to HII. Furthermore, some cell types were more susceptible to a particular mode of cell death. In the cerebellum, Purkinje cells died by necrosis but never by apoptosis. In contrast, cerebellar granule cells were frequently apoptotic, but never necrotic. In the hippocampus, apoptosis occurred in the inner layer neurons of the dentate fascia and necrosis in the more mature outer layer neurons. This suggests that immature neurons may be more prone to apoptotic death while terminally differentiated neurons die by necrosis. Apoptosis but not necrosis was seen in cerebral white matter. This model may help to elucidate the factors that determine cell fate following HII and aid the development of cerebroprotective strategies.  相似文献   

20.
Thioltransferase (glutaredoxin) is a member of the family of thiol-disulfide oxido-reductases that maintain the sulfhydryl homeostasis in cells by catalyzing thiol-disulfide interchange reactions. One of the major consequences of oxidative stress in brain is formation of protein-glutathione mixed disulfide (through oxidation of protein thiols) which can be reversed by thioltransferase during recovery of brain from oxidative stress. Here we have visualized the location of thioltransferase in brain regions from seven human tissues obtained at autopsy. Constitutively expressed thioltransferase activity was detectable in all human brains examined although inter-individual variations were seen. The enzyme activity was significantly higher in hippocampus and cerebellum as compared to other regions. Constitutive expression of thioltransferase mRNA was detectable by Northern blot analysis. Localization of thioltransferase mRNA by fluorescence in situ hybridization revealed its presence predominantly in neurons in the cerebral cortex, Purkinje and granule cell layers of the cerebellum, granule cell layer of the dentate gyrus and in the pyramidal neurons of CA1, CA2 and CA3 subfields of hippocampus. These discrete neuronal concentrations of thioltransferase would be consistent with an essential role in modulating recovery of protein thiols from mixed disulfides formed during oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号