首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
目的 探究6D治疗床联合锥形束CT(CBCT)容积旋转调强(VMAT)治疗妇科肿瘤患者的摆位误差,以及其靶区外放边界的变化趋势。方法 妇科肿瘤术后患者20例,采用HexaPODTMevo RT 6D治疗床和kV级CBCT影像引导的容积调强放射治疗。所有患者常规摆位后均行校正前CBCT扫描,利用6D治疗床在线校正后,再次行CBCT扫描,治疗后第3次行CBCT扫描,分别获得校正前、校正后、治疗后X射线容积影像,所有容积图像与计划CT图像采用自动骨性标记和手动微调的配准方式,获得三维平移(x、y、z)和旋转方向(RxRyRz)的摆位误差,分析其摆位误差及计划靶区外放边界。结果 患者共行CBCT扫描594次,6D治疗床在线校正后,分次间摆位误差在yzRxRyRz轴方向上明显缩小(t=6.21、-8.60、2.13、-8.51、-3.48,P<0.05)。外扩边界MPTVx轴、y轴、z轴方向上分别为2.20、3.43、2.00 mm,校正前后减少幅度为4.46~6.05 mm。结论 6D治疗床联合CBCT可明显提高妇科肿瘤盆腔放疗患者的摆位精度,同时可为精确设定计划靶区外放边界提供可靠依据。  相似文献   

2.
PURPOSE: Modern radiotherapy has achieved substantial improvement in tumour control and toxicity rates by escalating the total dose to the target volume while sparing surrounding normal tissues. It has therefore become necessary to precisely track tumour position in order to minimise geometrical uncertainties due to setup errors and organ motion. We conducted this prospective evaluation of prostate cancer patients treated with image-guided conformal radiation therapy at our institution. We implanted three fiducial markers (gold seeds) within the prostatic gland in order to quantify daily target displacements and to generate specific margins around the clinical target volume (CTV) to create an appropriate planned target volume (PTV). MATERIALS AND METHODS: Between April and December 2009, ten patients affected with localised prostate cancer were transrectally implanted with three radio-opaque markers. Each patient underwent a computed tomography (CT) scan for planning purposes following proper bladder and rectum preparation. During treatment two orthogonal images were acquired daily and compared with previously generated digitally reconstructed radiographs. After manual localisation, comparison between the position of the gold seeds on the portal and reference images was carried out, and a set of extrapolated lateral-lateral (LL), anterior-posterior (AP) and cranial-caudal (CC) shift corrections was calculated and recorded. Couch corrections were applied with a threshold of 3 mm displacement. RESULTS: Systematic and random errors for each direction were calculated either as measured according to displacement of the gold seeds prior to any couch movement and after couch position correction according to the radio-opaque markers. For skin marks, mean systematic and random errors were 0.12+2.94 mm for LL, 1.04+3.37 mm for AP, -1.14+2.71 mm for CC, whereas for seed markers, mean and systematic errors were 0.6+1.5 mm for LL, 0.51+2.45 mm for AP and -0.25+2.51 mm for CC. A scatter plot generated on all measurements after couch repositioning according to gold-seed displacement suggested a confidence range of shift distributions within 5 mm for LL, 8 mm for CC, and 7 mm for AP. The total systematic and random components were then used to calculate proper PTV in patients receiving conventional treatment (7 mm for LL and 9 mm for both AP and CC). CONCLUSIONS: Prostate positional variability during a course of radiation treatment is strongly influenced by setup and organ motion. Organ tracking through fiducial markers and electronic portal imaging is able to reduce the spread of displacements, significantly contributing to improve the ballistic precision of radiation delivery.  相似文献   

3.
《Medical Dosimetry》2023,48(3):181-186
This study aimed to assess the impact of rotational setup errors on the target volume's dose distribution during radiotherapy for prostate cancer. A 6D robotic couch was used to describe the rotational setup error, and the dosage change in the target volume was analyzed using the planning evaluation factors. Treatment plans for three-dimensional conformal radiotherapy (3DCRT), intensity-modulated radiotherapy (IMRT), and volumetric modulated arc radiotherapy (VMAT) were established after contouring the target volume and surrounding normal tissues on tomography obtained from the humanoid phantom. A 6D robotic couch was employed in the radiation room to describe the rotational setup errors of ±1° to ±5° in roll, yaw, and pitch, and cone beam computed tomography (CBCT) images were obtained. Furthermore, the dose distribution was extracted from the 3DCRT, IMRT, and VMAT treatment plans, dose mapping was performed on CBCT that depicts the rotational setup error. Target coverage(TC) decreased by 0.39% to 2.17% in roll, 0.43% to 2.59% in yaw, and 0.70% to 4.12% in pitch, respectively. In the comparison using the Radiation Therapy Oncology Group (RTOG) protocol criteria, when the rotational setup error of VMAT pitch was -2° or more, more than +1°, a target coverage of 95% or lower was shown, indicating the greatest effect among rotational setup errors. Furthermore, in 3DCRT, IMRT, and VMAT, the rotational setup error showed the greatest effect in pitch, and the dose change was larger in VMAT than in 3DCRT and IMRT. Therefore, specific rotational error due to pitch during radiotherapy for prostate cancer requires special consideration. Moreover, the more sophisticated and complex algorithms, such as VMAT, applied, the greater the dose change of target coverage due to rotational error; therefore, caution is required.  相似文献   

4.
目的 分析锥形束CT(CBCT)在线摆位校正与离线自适应校正在减小头颈部肿瘤临床靶区(CTV)外放,从而减轻正常组织并发症中的作用.方法 16例行三维适形放疗的头颈部癌症患者入组.分次放疗前后均行在线CBCT扫描1次,并与计划CT图像配准,记录各个方向的配准差值.放疗前后的配准差值分别作为放疗分次间误差和分次内误差,用于计算每例患者的系统误差和随机误差.利用CTV外放计算公式,计算在线校正前后CTV外放;以0.5 mm为允许的最大残余系统误差,计算离线校正系统摆位误差后CTV外放.结果 未经在线校正,左右、头脚和前后方向上群体化CTV外放分别为5.7mm、5.6 mm和7.3 mm;每分次放疗均行在线校正,3个方向上群体化CTV外放分别为1.7 mm、1.7 mm和2.3 mm;对系统摆位误差进行离线自适应校正,3个方向上群体化CTV外放分别为2.7 mm、2.5mm和3.6 mm.结论 基于CBCT图像分析的在线校正和离线自适应校正均能明显减小摆位误差,有助于缩小CTV外放,并有望减轻正常组织并发症.  相似文献   

5.
目的 分析锥形束CT(CBCT)在线摆位校正与离线自适应校正在减小头颈部肿瘤临床靶区(CTV)外放,从而减轻正常组织并发症中的作用.方法 16例行三维适形放疗的头颈部癌症患者入组.分次放疗前后均行在线CBCT扫描1次,并与计划CT图像配准,记录各个方向的配准差值.放疗前后的配准差值分别作为放疗分次间误差和分次内误差,用于计算每例患者的系统误差和随机误差.利用CTV外放计算公式,计算在线校正前后CTV外放;以0.5 mm为允许的最大残余系统误差,计算离线校正系统摆位误差后CTV外放.结果 未经在线校正,左右、头脚和前后方向上群体化CTV外放分别为5.7mm、5.6 mm和7.3 mm;每分次放疗均行在线校正,3个方向上群体化CTV外放分别为1.7 mm、1.7 mm和2.3 mm;对系统摆位误差进行离线自适应校正,3个方向上群体化CTV外放分别为2.7 mm、2.5mm和3.6 mm.结论 基于CBCT图像分析的在线校正和离线自适应校正均能明显减小摆位误差,有助于缩小CTV外放,并有望减轻正常组织并发症.  相似文献   

6.
目的 分析锥形束CT(CBCT)在线摆位校正与离线自适应校正在减小头颈部肿瘤临床靶区(CTV)外放,从而减轻正常组织并发症中的作用.方法 16例行三维适形放疗的头颈部癌症患者入组.分次放疗前后均行在线CBCT扫描1次,并与计划CT图像配准,记录各个方向的配准差值.放疗前后的配准差值分别作为放疗分次间误差和分次内误差,用于计算每例患者的系统误差和随机误差.利用CTV外放计算公式,计算在线校正前后CTV外放;以0.5 mm为允许的最大残余系统误差,计算离线校正系统摆位误差后CTV外放.结果 未经在线校正,左右、头脚和前后方向上群体化CTV外放分别为5.7mm、5.6 mm和7.3 mm;每分次放疗均行在线校正,3个方向上群体化CTV外放分别为1.7 mm、1.7 mm和2.3 mm;对系统摆位误差进行离线自适应校正,3个方向上群体化CTV外放分别为2.7 mm、2.5mm和3.6 mm.结论 基于CBCT图像分析的在线校正和离线自适应校正均能明显减小摆位误差,有助于缩小CTV外放,并有望减轻正常组织并发症.  相似文献   

7.
目的 分析锥形束CT(CBCT)在线摆位校正与离线自适应校正在减小头颈部肿瘤临床靶区(CTV)外放,从而减轻正常组织并发症中的作用.方法 16例行三维适形放疗的头颈部癌症患者入组.分次放疗前后均行在线CBCT扫描1次,并与计划CT图像配准,记录各个方向的配准差值.放疗前后的配准差值分别作为放疗分次间误差和分次内误差,用于计算每例患者的系统误差和随机误差.利用CTV外放计算公式,计算在线校正前后CTV外放;以0.5 mm为允许的最大残余系统误差,计算离线校正系统摆位误差后CTV外放.结果 未经在线校正,左右、头脚和前后方向上群体化CTV外放分别为5.7mm、5.6 mm和7.3 mm;每分次放疗均行在线校正,3个方向上群体化CTV外放分别为1.7 mm、1.7 mm和2.3 mm;对系统摆位误差进行离线自适应校正,3个方向上群体化CTV外放分别为2.7 mm、2.5mm和3.6 mm.结论 基于CBCT图像分析的在线校正和离线自适应校正均能明显减小摆位误差,有助于缩小CTV外放,并有望减轻正常组织并发症.  相似文献   

8.
目的 分析锥形束CT(CBCT)在线摆位校正与离线自适应校正在减小头颈部肿瘤临床靶区(CTV)外放,从而减轻正常组织并发症中的作用。方法 16例行三维适形放疗的头颈部癌症患者入组。分次放疗前后均行在线CBCT扫描1次,并与计划CT图像配准,记录各个方向的配准差值。放疗前后的配准差值分别作为放疗分次间误差和分次内误差,用于计算每例患者的系统误差和随机误差。利用CTV外放计算公式,计算在线校正前后CTV外放;以0.5 mm为允许的最大残余系统误差,计算离线校正系统摆位误差后CTV外放。结果 未经在线校正,左右、头脚和前后方向上群体化CTV外放分别为5.7 mm、5.6 mm和7.3 mm;每分次放疗均行在线校正,3个方向上群体化CTV外放分别为1.7 mm、1.7 mm和2.3 mm;对系统摆位误差进行离线自适应校正,3个方向上群体化CTV外放分别为2.7 mm、2.5 mm和3.6 mm。结论 基于CBCT图像分析的在线校正和离线自适应校正均能明显减小摆位误差,有助于缩小CTV外放,并有望减轻正常组织并发症。  相似文献   

9.
目的 分析锥形束CT(CBCT)在线摆位校正与离线自适应校正在减小头颈部肿瘤临床靶区(CTV)外放,从而减轻正常组织并发症中的作用.方法 16例行三维适形放疗的头颈部癌症患者入组.分次放疗前后均行在线CBCT扫描1次,并与计划CT图像配准,记录各个方向的配准差值.放疗前后的配准差值分别作为放疗分次间误差和分次内误差,用于计算每例患者的系统误差和随机误差.利用CTV外放计算公式,计算在线校正前后CTV外放;以0.5 mm为允许的最大残余系统误差,计算离线校正系统摆位误差后CTV外放.结果 未经在线校正,左右、头脚和前后方向上群体化CTV外放分别为5.7mm、5.6 mm和7.3 mm;每分次放疗均行在线校正,3个方向上群体化CTV外放分别为1.7 mm、1.7 mm和2.3 mm;对系统摆位误差进行离线自适应校正,3个方向上群体化CTV外放分别为2.7 mm、2.5mm和3.6 mm.结论 基于CBCT图像分析的在线校正和离线自适应校正均能明显减小摆位误差,有助于缩小CTV外放,并有望减轻正常组织并发症.  相似文献   

10.
目的 分析锥形束CT(CBCT)在线摆位校正与离线自适应校正在减小头颈部肿瘤临床靶区(CTV)外放,从而减轻正常组织并发症中的作用.方法 16例行三维适形放疗的头颈部癌症患者入组.分次放疗前后均行在线CBCT扫描1次,并与计划CT图像配准,记录各个方向的配准差值.放疗前后的配准差值分别作为放疗分次间误差和分次内误差,用于计算每例患者的系统误差和随机误差.利用CTV外放计算公式,计算在线校正前后CTV外放;以0.5 mm为允许的最大残余系统误差,计算离线校正系统摆位误差后CTV外放.结果 未经在线校正,左右、头脚和前后方向上群体化CTV外放分别为5.7mm、5.6 mm和7.3 mm;每分次放疗均行在线校正,3个方向上群体化CTV外放分别为1.7 mm、1.7 mm和2.3 mm;对系统摆位误差进行离线自适应校正,3个方向上群体化CTV外放分别为2.7 mm、2.5mm和3.6 mm.结论 基于CBCT图像分析的在线校正和离线自适应校正均能明显减小摆位误差,有助于缩小CTV外放,并有望减轻正常组织并发症.  相似文献   

11.
目的 分析锥形束CT(CBCT)在线摆位校正与离线自适应校正在减小头颈部肿瘤临床靶区(CTV)外放,从而减轻正常组织并发症中的作用.方法 16例行三维适形放疗的头颈部癌症患者入组.分次放疗前后均行在线CBCT扫描1次,并与计划CT图像配准,记录各个方向的配准差值.放疗前后的配准差值分别作为放疗分次间误差和分次内误差,用于计算每例患者的系统误差和随机误差.利用CTV外放计算公式,计算在线校正前后CTV外放;以0.5 mm为允许的最大残余系统误差,计算离线校正系统摆位误差后CTV外放.结果 未经在线校正,左右、头脚和前后方向上群体化CTV外放分别为5.7mm、5.6 mm和7.3 mm;每分次放疗均行在线校正,3个方向上群体化CTV外放分别为1.7 mm、1.7 mm和2.3 mm;对系统摆位误差进行离线自适应校正,3个方向上群体化CTV外放分别为2.7 mm、2.5mm和3.6 mm.结论 基于CBCT图像分析的在线校正和离线自适应校正均能明显减小摆位误差,有助于缩小CTV外放,并有望减轻正常组织并发症.  相似文献   

12.
目的 分析锥形束CT(CBCT)在线摆位校正与离线自适应校正在减小头颈部肿瘤临床靶区(CTV)外放,从而减轻正常组织并发症中的作用.方法 16例行三维适形放疗的头颈部癌症患者入组.分次放疗前后均行在线CBCT扫描1次,并与计划CT图像配准,记录各个方向的配准差值.放疗前后的配准差值分别作为放疗分次间误差和分次内误差,用于计算每例患者的系统误差和随机误差.利用CTV外放计算公式,计算在线校正前后CTV外放;以0.5 mm为允许的最大残余系统误差,计算离线校正系统摆位误差后CTV外放.结果 未经在线校正,左右、头脚和前后方向上群体化CTV外放分别为5.7mm、5.6 mm和7.3 mm;每分次放疗均行在线校正,3个方向上群体化CTV外放分别为1.7 mm、1.7 mm和2.3 mm;对系统摆位误差进行离线自适应校正,3个方向上群体化CTV外放分别为2.7 mm、2.5mm和3.6 mm.结论 基于CBCT图像分析的在线校正和离线自适应校正均能明显减小摆位误差,有助于缩小CTV外放,并有望减轻正常组织并发症.  相似文献   

13.
目的 分析锥形束CT(CBCT)在线摆位校正与离线自适应校正在减小头颈部肿瘤临床靶区(CTV)外放,从而减轻正常组织并发症中的作用.方法 16例行三维适形放疗的头颈部癌症患者入组.分次放疗前后均行在线CBCT扫描1次,并与计划CT图像配准,记录各个方向的配准差值.放疗前后的配准差值分别作为放疗分次间误差和分次内误差,用于计算每例患者的系统误差和随机误差.利用CTV外放计算公式,计算在线校正前后CTV外放;以0.5 mm为允许的最大残余系统误差,计算离线校正系统摆位误差后CTV外放.结果 未经在线校正,左右、头脚和前后方向上群体化CTV外放分别为5.7mm、5.6 mm和7.3 mm;每分次放疗均行在线校正,3个方向上群体化CTV外放分别为1.7 mm、1.7 mm和2.3 mm;对系统摆位误差进行离线自适应校正,3个方向上群体化CTV外放分别为2.7 mm、2.5mm和3.6 mm.结论 基于CBCT图像分析的在线校正和离线自适应校正均能明显减小摆位误差,有助于缩小CTV外放,并有望减轻正常组织并发症.  相似文献   

14.
To introduce an approach for online adaptive replanning (i.e., dose-guided radiosurgery) in frameless stereotactic radiosurgery, when a 6-dimensional (6D) robotic couch is not available in the linear accelerator (linac). Cranial radiosurgical treatments are planned in our department using intensity-modulated technique. Patients are immobilized using thermoplastic mask. A cone-beam computed tomography (CBCT) scan is acquired after the initial laser-based patient setup (CBCTsetup). The online adaptive replanning procedure we propose consists of a 6D registration-based mapping of the reference plan onto actual CBCTsetup, followed by a reoptimization of the beam fluences (“6D plan”) to achieve similar dosage as originally was intended, while the patient is lying in the linac couch and the original beam arrangement is kept. The goodness of the online adaptive method proposed was retrospectively analyzed for 16 patients with 35 targets treated with CBCT-based frameless intensity modulated technique. Simulation of reference plan onto actual CBCTsetup, according to the 4 degrees of freedom, supported by linac couch was also generated for each case (4D plan). Target coverage (D99%) and conformity index values of 6D and 4D plans were compared with the corresponding values of the reference plans. Although the 4D-based approach does not always assure the target coverage (D99% between 72% and 103%), the proposed online adaptive method gave a perfect coverage in all cases analyzed as well as a similar conformity index value as was planned. Dose-guided radiosurgery approach is effective to assure the dose coverage and conformity of an intracranial target volume, avoiding resetting the patient inside the mask in a “trial and error” way so as to remove the pitch and roll errors when a robotic table is not available.  相似文献   

15.
目的 分析锥形束CT(CBCT)在线摆位校正与离线自适应校正在减小头颈部肿瘤临床靶区(CTV)外放,从而减轻正常组织并发症中的作用.方法 16例行三维适形放疗的头颈部癌症患者入组.分次放疗前后均行在线CBCT扫描1次,并与计划CT图像配准,记录各个方向的配准差值.放疗前后的配准差值分别作为放疗分次间误差和分次内误差,用于计算每例患者的系统误差和随机误差.利用CTV外放计算公式,计算在线校正前后CTV外放;以0.5 mm为允许的最大残余系统误差,计算离线校正系统摆位误差后CTV外放.结果 未经在线校正,左右、头脚和前后方向上群体化CTV外放分别为5.7mm、5.6 mm和7.3 mm;每分次放疗均行在线校正,3个方向上群体化CTV外放分别为1.7 mm、1.7 mm和2.3 mm;对系统摆位误差进行离线自适应校正,3个方向上群体化CTV外放分别为2.7 mm、2.5mm和3.6 mm.结论 基于CBCT图像分析的在线校正和离线自适应校正均能明显减小摆位误差,有助于缩小CTV外放,并有望减轻正常组织并发症.  相似文献   

16.
目的 通过对体部肿瘤放射治疗的ExacTrac X-射线图像的回顾性分析,了解患者群体的摆位误差和残余误差分布情况,研究六维放射治疗床修正摆位误差的必要性和有效性。方法 通过配准数字重建图像(DRR)和ExacTrac图像引导系统拍摄的正交kV级验证像的骨性解剖结构,计算患者3个方向的平移误差和旋转误差以及对应的残余误差。结果 平移摆位误差为x(左右方向):(2.27±2.02)mm,y(头脚方向):(4.49±2.52)mm,z(腹背方向):(2.27±1.37)mm;旋转摆位误差为Rx(矢状面):(1.02±0.73)°,Ry(横断面):(0.67±0.68)°,Rz(冠状面):(0.76±0.84)°。残余平移误差x(r):(0.27±0.48)mm,y(r):(0.37±0.45)mm,z(r):(0.22±0.30)mm;残余旋转误差为Rx(r):(0.17±0.33)°,Ry(r):(0.14±0.34)°,Rz(r):(0.16±0.28)°。结论 对于体部放射治疗的患者,旋转误差和平移误差是同时存在的,不仅需要校准平移误差,旋转误差也不容忽视。ExacTrac X-射线图像引导系统能够有效纠正六自由度的摆位误差,并保证残余误差在较小的范围内,保证了体部肿瘤放疗的治疗精度。  相似文献   

17.
目的:建立光学表面监测系统(OSMS)在头部无框架立体定向放射外科(SRS)和立体定向放射治疗(SRT)中应用的基本流程,评价OSMS在头部模体和应用Q-Fix开孔面罩固定的头部SRT患者中,分次内实时监测位置误差的精确性和有效性。方法:通过头部SRS仿真模体OSMS的监测位移与Edge六维床预设位移的偏差,评估OSM...  相似文献   

18.
The purpose of this study was to develop an evidence-based off-line setup correction protocol for systematic errors in prostate radiation therapy. Daily orthogonal electronic portal images were acquired from 30 patients. Field displacements were measured in the medial-lateral (ML), superior-inferior (SI), and anterior-posterior (AP) directions for each treatment fraction. The off-line protocol corrects the mean field displacement found from n consecutive images, starting at a particular fraction of treatment, with a fixed tolerance level. Simulations were performed with the measured data to determine (1) how many images (n) should be averaged to determine the systematic error; (2) on which treatment fraction should the protocol be initiated; and (3) what tolerance level should be applied to determine whether the patient position should be corrected. Uncorrected systematic errors in the ML, SI, and AP directions were (mean position +/- 1 standard deviation [SD]): -0.7 +/- 2.2 mm, -1.5 +/- 1.3 mm, and 1.4 +/- 2.6 mm, respectively. Random errors (1 SD and range) were 1.9 mm (1.3 - 3.3), 1.5 mm (0. - 4.1), and 1.8 mm (1.0-2.6), respectively. A correction based on a single image taken on the first fraction actually increased the systematic errors in the ML and SI directions compared with no correction. More accurate correction of systematic errors was achieved with increasing number of images averaged, with only small benefit after 5 images. With fewer images averaged, delaying the start of the protocol resulted in more accurate correction because of the influence of unrepresentative positions at early fractions. The number of corrections made on patients with small (< 2 mm) systematic errors was minimized for tolerance values of 2 mm and n > or = 5 images averaged. The optimal off-line setup correction protocol would be to shift the patient by the mean displacement of the first 5 portal images of a radical course of radiation therapy. A small tolerance level should be utilized with 2 mm giving good accuracy with minimal unnecessary shifts.  相似文献   

19.
《Medical Dosimetry》2014,39(4):292-299
Stereotactic radiotherapy (SRT) requires tight margins around the tumor, thus producing a steep dose gradient between the tumor and the surrounding healthy tissue. Any setup errors might become clinically significant. To date, no study has been performed to evaluate the dosimetric variations caused by setup errors with a 3-dimensional dosimeter, the PRESAGE. This research aimed to evaluate the potential effect that setup errors have on the dose distribution of intracranial SRT. Computed tomography (CT) simulation of a CIRS radiosurgery head phantom was performed with 1.25-mm slice thickness. An ideal treatment plan was generated using Brainlab iPlan. A PRESAGE was made for every treatment with and without errors. A prescan using the optical CT scanner was carried out. Before treatment, the phantom was imaged using Brainlab ExacTrac. Actual radiotherapy treatments with and without errors were carried out with the Novalis treatment machine. Postscan was performed with an optical CT scanner to analyze the dose irradiation. The dose variation between treatments with and without errors was determined using a 3-dimensional gamma analysis. Errors are clinically insignificant when the passing ratio of the gamma analysis is 95% and above. Errors were clinically significant when the setup errors exceeded a 0.7-mm translation and a 0.5° rotation. The results showed that a 3-mm translation shift in the superior-inferior (SI), right-left (RL), and anterior-posterior (AP) directions and 2° couch rotation produced a passing ratio of 53.1%. Translational and rotational errors of 1.5 mm and 1°, respectively, generated a passing ratio of 62.2%. Translation shift of 0.7 mm in the directions of SI, RL, and AP and a 0.5° couch rotation produced a passing ratio of 96.2%. Preventing the occurrences of setup errors in intracranial SRT treatment is extremely important as errors greater than 0.7 mm and 0.5° alter the dose distribution. The geometrical displacements affect dose delivery to the tumor and the surrounding normal tissues.  相似文献   

20.
PURPOSE: To investigate the magnitude and clinical relevance of relative motion/nonrigid setup errors in the head-and-neck (H&N) region. MATERIAL AND METHODS: Eleven patients with tumors in the H&N region were immobilized in thermoplastic head masks. Patient positioning was verified using a kilovoltage cone-beam CT (kv CBCT) prior to 100 treatment fractions. Five different regions of interest (ROIs) were selected for automatic image registration of planning CT and verification CBCT: (1) the whole volume covering planning CT and CBCT, (2) the skull, (3) the mandible, (4) C1-C3, and (5) C4-C6. Differences were calculated describing relative motion between the ROIs. RESULTS: The 3-D patient setup error was 3.2 mm +/- 1.7 mm based on registration of the whole volume. No systematic relative motion (group mean errors <0.5 mm and <0.5 degrees ) between planning and treatment for any ROI was observed. Mobility was largest for the skull and the mandible relative to C4-C6 with 3-D displacements of 4.7 mm +/- 2.5 mm and 4.4 mm +/- 2.5 mm. Relative rotations were largest around the left-right axis (nodding) between C1-C3 and C4-C6 with maximum 11 degrees . No time trend of relative motion was observed. Margins for compensation of relative motion ranged between 5 mm and 10 mm. CONCLUSION: The simplification of the patient as a rigid body was shown to result in significant errors due to relative motion in the H&N region. Margins for compensation of relative motion exceeded margins for compensation of patient positioning errors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号