首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Concussions are among the most common injuries sustained by ice hockey goaltenders and can result from collisions, falls and puck impacts. However, ice hockey goaltender helmet certification standards solely involve drop tests to a rigid surface. This study examined how the design characteristics of different ice hockey goaltender helmets affect head kinematics and brain strain for the three most common impact events associated with concussion for goaltenders. A NOCSAE headform was impacted under conditions representing falls, puck impacts and shoulder collisions while wearing three different types of ice hockey goaltender helmet models. Resulting linear and rotational acceleration as well as maximum principal strain were measured for each impact condition. The results indicate that a thick liner and stiff shell material are desirable design characteristics for falls and puck impacts to reduce head kinematic and brain tissue responses. However for collisions, the shoulder being more compliant than the materials of the helmet causes insufficient compression of the helmet materials and minimizing any potential performance differences. This suggests that current ice hockey goaltender helmets can be optimized for protection against falls and puck impacts. However, given collisions are the leading cause of concussion for ice hockey goaltenders and the tested helmets provided little to no protection, a clear opportunity exists to design new goaltender helmets which can better protect ice hockey goaltenders from collisions.  相似文献   

2.
The best way to reduce the risk of head injury (up to 69% reduction) is to wear a helmet. In recent years, the improvement of helmet standard tests focused on reproducing realistic impact conditions and including the effect of rotational acceleration. However, less importance has been given to the development of a realistic headform. The goal of this work was to evaluate the role of scalp tissue in head impact kinematics; both with respect to its mechanical properties and with respect to its sliding properties. An EN960 and HIII headform were subjected to linear and oblique impacts, respectively, both with and without porcine scalp attached. Different speeds, impact locations and impact surfaces were tested. Standard linear drop tests (EN960) showed that the scalp reduced the impact energy by up to 68.7% (rear impact). Oblique head impact tests showed how the headform-anvil friction coefficient changes when the HIII is covered with scalp, affecting linear and rotational accelerations. Therefore, the scalp plays an important role in head impacts and it should be realistically represented in headforms used for impact tests and in numerical models of the human head.  相似文献   

3.
枪弹冲击下新型防弹头盔质量对颈椎损伤影响   总被引:1,自引:0,他引:1  
目的建立有效的头颈部及防弹头盔有限元模型,研究枪弹冲击不同质量防弹头盔时颈部的生物力学响应。方法通过在头盔本体(1.24 kg)增加附件均布质量2 kg,并加载手枪弹以450 m/s速度从正面、侧面、顶部冲击防弹头盔,获得人体颈椎的力学响应。结果受到冲击时,颈椎应力远大于颅骨应力。枪弹冲击防弹头盔时,相比头部,颈椎为易受伤部位,其中椎骨C3所受应力最大。不考虑增加附件质量时,子弹从正面、侧面、顶部方向冲击头盔时,侧面冲击对颈椎伤害最大,相比其他方向冲击最大应力约增加2.58%;同时正面冲击对头部损伤最大,应力约增加59.4%。考虑附件质量时,头盔质量越大对颈椎的损伤越严重。头盔质量从1.24 kg增加到3.24 kg,顶部冲击对颈椎的损伤最大,其应力相比其他方向冲击增加12.98%。结论在设计防弹头盔时应考虑其轻量化,研究结果为防弹头盔设计提供科学参考。  相似文献   

4.
The current study aims to investigate the effectiveness of two different designs of helmet interior cushion, (Helmet 1: strap-netting; Helmet 2: Oregon Aero foam-padding), and the effect of the impact directions on the helmeted head during ballistic impact. Series of ballistic impact simulations (frontal, lateral, rear, and top) of a full-metal-jacketed bullet were performed on a validated finite element head model equipped with the two helmets, to assess the severity of head injuries sustained in ballistic impacts using both head kinematics and biomechanical metrics. Benchmarking with experimental ventricular and intracranial pressures showed that there is good agreement between the simulations and experiments. In terms of extracranial injuries, top impact had the highest skull stress, still without fracturing the skull. In regard to intracranial injuries, both the lateral and rear impacts generally gave the highest principal strains as well as highest shear strains, which exceed the injury thresholds. Off-cushion impacts were found to be at higher risk of intracranial injuries. The study also showed that the Oregon Aero foam pads helped to reduce impact forces. It also suggested that more padding inserts of smaller size may offer better protection. This provides some insights on future’s helmet design against ballistic threats.  相似文献   

5.
The age at which young hockey players should safely body check is unknown. We sought to determine if playing position (defensemen vs. forwards), event type (practice vs. game), or head impact location (top vs. back vs. front vs. sides) had an effect on head impact biomechanics in youth hockey. A total of 52 Bantam (13–14 years old) and Midget (15–16 years old) ice hockey players wore accelerometer-instrumented helmets for two seasons. Biomechanical data were captured for 12,253 head impacts during 151 games and 137 practices. Random intercepts general mixed linear models were employed to analyze differences in linear acceleration, rotational acceleration, and HITsp by player position, event type, and head impact location. Head impacts sustained during games resulted in greater rotational acceleration and HITsp than those sustained during practices. No event type or playing position differences in linear acceleration were observed. Impacts to the top of the head resulted in greater linear acceleration, but lower rotational acceleration and HITsp, than impacts to back, front, or side of the head. Side head impacts yielded greater rotational acceleration and HITsp compared to the other head impact locations. Since linear and rotational accelerations were observed in all impacts, future hockey helmet design standards should include rotational acceleration limits in addition to the current linear acceleration standards.  相似文献   

6.
Linear impact tests were conducted on 17 modern football helmets. The helmets were placed on the Hybrid III head with the neck attached to a sliding table. The head was instrumented with an array of 3-2-2-2 accelerometers to determine translational acceleration, rotational acceleration, and HIC. Twenty-three (23) different impacts were conducted on four identical helmets of each model at eight sites on the shell and facemask, four speeds (5.5, 7.4, 9.3, and 11.2 m/s) and two temperatures (22.2 and 37.8 °C). There were 1,850 tests in total; 276 established the 1990s helmet performance (baseline) and 1,564 were on the 17 different helmet models. Differences from the 1990s baseline were evaluated using the Student t test (p < 0.05 as significant). Four of the helmets had significantly lower HICs and head accelerations than the 1990s baseline with average reductions of 14.6–21.9% in HIC, 7.3–14.0% in translational acceleration, and 8.4–15.9% in rotational acceleration. Four other helmets showed some improvements. Eight were not statistically different from the 1990s baseline and one had significantly poorer performance. Of the 17 helmet models, four provided a significant reduction in head responses compared to 1990s helmets.  相似文献   

7.
The potential for mouthguards to change the risk of concussion was studied in football helmet impacts. The Hybrid III head was modified with an articulating mandible, dentition, and compliant temporomandibular joints (TMJ). It was instrumented for triaxial head acceleration and triaxial force at the TMJs and upper dentition. Mandible force and displacement were validated against cadaver impacts to the chin. In phase 1, one of five mouthguards significantly lowered HIC in 6.7 m/s impacts (p = 0.025) from the no mouthguard condition but not in 9.5 m/s tests. In phase 2, eight mouthguards increased HIC from +1 to +17% in facemask impacts that loaded the chinstraps and mandible; one was statistically higher (p = 0.018). Peak head acceleration was +1 to +15% higher with six mouthguards and 2–3% lower with two others. The differences were not statistically significant. Five of eight mouthguards significantly reduced forces on the upper dentition by 40.8–63.9%. Mouthguards tested in this study with the Hybrid III articulating mandible lowered forces on the dentition and TMJ, but generally did not influence HIC or concussion risks.  相似文献   

8.
Over the last decade, advances in technology have enabled researchers to evaluate concussion biomechanics through measurement of head impacts sustained during play using two primary methods: (1) laboratory reconstruction of open-field head contact, and (2) instrumented helmets. The purpose of this study was to correlate measures of head kinematics recorded by the Head Impact Telemetry (HIT) System (Simbex, NH) with those obtained from a Hybrid III (HIII) anthropometric headform under conditions that mimicked impacts occurring in the NFL. Linear regression analysis was performed to correlate peak linear acceleration, peak rotational acceleration, Gadd Severity Index (GSI), and Head Injury Criterion (HIC15) obtained from the instrumented helmet and HIII. The average absolute location error between instrumented helmet impact location and the direction of HIII head linear acceleration were also calculated. The HIT System overestimated Hybrid III peak linear acceleration by 0.9% and underestimated peak rotational acceleration by 6.1% for impact sites and velocities previously identified by the NFL as occurring during play. Acceleration measures for all impacts were correlated; however, linear was higher (r 2 = 0.903) than rotational (r 2 = 0.528) primarily due to lower HIT System rotational acceleration estimates at the frontal facemask test site. Severity measures GSI and HIC were also found to be correlated, albeit less than peak linear acceleration, with the overall difference between the two systems being less than 6.1% for either measure. Mean absolute impact location difference between systems was 31.2 ± 46.3° (approximately 0.038 ± 0.050 m), which was less than the diameter of the impactor surface in the test. In instances of severe helmet deflection (2.54–7.62 cm off the head), the instrumented helmet accurately measured impact location but overpredicted all severity metrics recorded by the HIII. Results from this study indicate that measurements from the two methods of study are correlated and provide a link that can be used to better interpret findings from future study using either technology.  相似文献   

9.
Helmet manufacturers recommend replacing a bicycle helmet after an impact or after anywhere from 2 to 10 years of use. The goal of this study was to quantify the effect of helmet age on peak headform acceleration during impact attenuation testing of field-used bicycle helmets. Helmets were acquired by donation from consumers and retail stores, and were included in the study if they were free of impact-related damage, had a legible manufacture date label, and were certified to at least one helmet standard. Helmets (n = 770) spanning 0–26 years old were drop tested to measure peak linear headform acceleration during impacts to the right and left front regions of the helmets at two impact speeds (3.0 and 6.2 m/s). General linear mixed models were used to assess the effect of age and three covariates (helmet style, size and certification impact speed) on peak acceleration. Overall, age was related to either no difference or a statistically significant but small increase (≤0.76 g/year of helmet age) in peak headform acceleration. Extrapolated across 20 years, age-related differences were less than both style- (traditional vs. BMX) and size-related differences. The age-related differences were also less than the variability observed between different helmets after accounting for style, size and certification effects. These findings mean that bicycle helmets (up to 26-year-old traditional helmets and 13-year-old BMX helmets) do not lose their ability to attenuate impacts with age; however, other helmet features that may change with age were not evaluated in this study.  相似文献   

10.
Sports-related concussion is the most common athletic head injury with football having the highest rate among high school athletes. Traditionally, research on the biomechanics of football-related head impact has been focused at the collegiate level. Less research has been performed at the high school level, despite the incidence of concussion among high school football players. The objective of this study is to twofold: to quantify the head impact exposure in high school football, and to develop a cumulative impact analysis method. Head impact exposure was measured by instrumenting the helmets of 40 high school football players with helmet mounted accelerometer arrays to measure linear and rotational acceleration. A total of 16,502 head impacts were collected over the course of the season. Biomechanical data were analyzed by team and by player. The median impact for each player ranged from 15.2 to 27.0 g with an average value of 21.7 (±2.4) g. The 95th percentile impact for each player ranged from 38.8 to 72.9 g with an average value of 56.4 (±10.5) g. Next, an impact exposure metric utilizing concussion injury risk curves was created to quantify cumulative exposure for each participating player over the course of the season. Impacts were weighted according to the associated risk due to linear acceleration and rotational acceleration alone, as well as the combined probability (CP) of injury associated with both. These risks were summed over the course of a season to generate risk weighted cumulative exposure. The impact frequency was found to be greater during games compared to practices with an average number of impacts per session of 15.5 and 9.4, respectively. However, the median cumulative risk weighted exposure based on combined probability was found to be greater for practices vs. games. These data will provide a metric that may be used to better understand the cumulative effects of repetitive head impacts, injury mechanisms, and head impact exposure of athletes in football.  相似文献   

11.

Context:

Measuring head impact exposure is a critical step toward understanding the mechanism and prevention of sport-related mild traumatic brain (concussion) injury, as well as the possible effects of repeated subconcussive impacts.

Objective:

To quantify the frequency and location of head impacts that individual players received in 1 season among 3 collegiate teams, between practice and game sessions, and among player positions.

Design:

Cohort study.

Setting:

Collegiate football field.

Patients or Other Participants:

One hundred eighty-eight players from 3 National Collegiate Athletic Association football teams.

Intervention(s):

Participants wore football helmets instrumented with an accelerometer-based system during the 2007 fall season.

Main Outcome Measure(s):

The number of head impacts greater than 10g and location of the impacts on the player''s helmet were recorded and analyzed for trends and interactions among teams (A, B, or C), session types, and player positions using Kaplan-Meier survival curves.

Results:

The total number of impacts players received was nonnormally distributed and varied by team, session type, and player position. The maximum number of head impacts for a single player on each team was 1022 (team A), 1412 (team B), and 1444 (team C). The median number of head impacts on each team was 4.8 (team A), 7.5 (team B), and 6.6 (team C) impacts per practice and 12.1 (team A), 14.6 (team B), and 16.3 (team C) impacts per game. Linemen and linebackers had the largest number of impacts per practice and per game. Offensive linemen had a higher percentage of impacts to the front than to the back of the helmet, whereas quarterbacks had a higher percentage to the back than to the front of the helmet.

Conclusions:

The frequency of head impacts and the location on the helmet where the impacts occur are functions of player position and session type. These data provide a basis for quantifying specific head impact exposure for studies related to understanding the biomechanics and clinical aspects of concussion injury, as well as the possible effects of repeated subconcussive impacts in football.  相似文献   

12.
Linear impactor tests were conducted on football helmets from the 1970s–1980s to complement recently reported tests on 1990s and 2010s helmets. Helmets were placed on the Hybrid III head with an array of accelerometers to determine translational and rotational acceleration. Impacts were at four sites on the helmet shell at 3.6–11.2 m/s. The four generations of helmets show a continuous improvement in response from bare head impacts in terms of Head Injury Criterion (HIC), peak head acceleration and peak rotational acceleration. Helmets of 2010s weigh 1.95 ± 0.2 kg and are 2.7 times heavier than 1970s designs. They are also 4.3 cm longer, 7.6 cm higher, and 4.9 cm wider. The extra size and weight allow the use of energy absorbing padding that lowers forces in helmet impacts. For frontal impacts at 7.4 m/s, the four best performing 2010s helmets have HIC of 148 ± 23 compared to 179 ± 42 for the 1990s baseline, 231 ± 27 for the 1980s, 253 ± 22 for the 1970s helmets, and 354 ± 3 for the bare head. The additional size and padding of the best 2010s helmets provide superior attenuation of impact forces in normal play and in conditions associated with concussion than helmets of the 1970s–1990s.  相似文献   

13.
A headform is needed to validate and compare helmet- and mouthguard-based sensors that measure the severity and direction of football head impacts. Our goal was to quantify the dynamic response of a mandibular load-sensing headform (MLSH) and to compare its performance and repeatability to an unmodified Hybrid III headform. Linear impactors in two independent laboratories were used to strike each headform at six locations at 5.5 m/s and at two locations at 3.6 and 7.4 m/s. Impact severity was quantified using peak linear acceleration (PLA) and peak angular acceleration (PAA), and direction was quantified using the azimuth and elevation of the PLA. Repeatability was quantified using coefficients of variation (COV) and standard deviations (SD). Across all impacts, PLA was 1.6 ± 1.8 g higher in the MLSH than in the Hybrid III (p = 0.002), but there were no differences in PAA (p = 0.25), azimuth (p = 0.43) and elevation (p = 0.11). Both headforms exhibited excellent or acceptable repeatability for PLA (HIII:COV = 2.1 ± 0.8%, MLSH:COV = 2.0 ± 1.2%, p = 0.98), but site-specific repeatability ranging from excellent to poor for PAA (HIII:COV = 7.2 ± 4.0%, MLSH:COV = 8.3 ± 5.8%, p = 0.58). Direction SD were generally <1° and did not vary between headforms. Overall, both headforms are similarly suitable for validating PLA in sensors that measure head impact severity in football players, however their utility for validating sensor PAA values varies with impact location.  相似文献   

14.
American football has both the highest rate of concussion incidences as well as the highest number of concussions of all contact sports due to both the number of athletes and nature of the sport. Recent research has linked concussions with long term health complications such as chronic traumatic encephalopathy and early onset Alzheimer’s. Understanding the mechanical characteristics of concussive impacts is critical to help protect athletes from these debilitating diseases and is now possible using helmet-based sensor systems. To date, real time on-field measurement of head impacts has been almost exclusively measured by devices that rely on accelerometers or gyroscopes attached to the player’s helmet, or embedded in a mouth guard. These systems monitor motion of the head or helmet, but do not directly measure impact energy. This paper evaluates the accuracy of a novel, multifunctional foam-based sensor that replaces a portion of the helmet foam to measure impact. All modified helmets were tested using a National Operating Committee Standards for Athletic Equipment-style drop tower with a total of 24 drop tests (4 locations with 6 impact energies). The impacts were evaluated using a headform, instrumented with a tri-axial accelerometer, mounted to a Hybrid III neck assembly. The resultant accelerations were evaluated for both the peak acceleration and the severity indices. These data were then compared to the voltage response from multiple Nano Composite Foam sensors located throughout the helmet. The foam sensor system proved to be accurate in measuring both the HIC and Gadd severity index, as well as peak acceleration while also providing additional details that were previously difficult to obtain, such as impact energy.  相似文献   

15.
An instrumented Hybrid III head was placed in a Schutt ION 4D football helmet and dropped on different turfs to study field types and temperature on head responses. The head was dropped 0.91 and 1.83 m giving impacts of 4.2 and 6.0 m/s on nine different football fields (natural, Astroplay, Fieldturf, or Gameday turfs) at turf temperatures of −2.7 to 23.9 °C. Six repeat tests were conducted for each surface at 0.3 m (1′) intervals. The Hybrid III was instrumented with triaxial accelerometers to determine head responses for the different playing surfaces. For the 0.91-m drops, peak head acceleration varied from 63.3 to 117.1 g and HIC15 from 195 to 478 with the different playing surfaces. The lowest response was with Astroplay, followed by the engineered natural turf. Gameday and Fieldturf involved higher responses. The differences between surfaces decreased in the 1.83 m tests. The cold weather testing involved higher accelerations, HIC15 and delta V for each surface. The helmet drop test used in this study provides a simple and convenient means of evaluating the compliance and energy absorption of football playing surfaces. The type and temperature of the playing surface influence head responses.  相似文献   

16.
目的 为了研究头部在钝器作用下的生物力学响应及损伤机理。 方法 利用CT图像数据和MRI图像数据对头部骨骼与内部软组织进行几何重建,然后画分网格,构建颅脑有限元模型。另一方面,对连于躯干的头部标本进行10 m/s的低速冲击,测试冲击部位接触力、顶部应变及冲击的对侧(枕部)加速度。把构建的有限元模型导入MADYMO软件进行相同条件下模拟仿真,从输出模块里输出相应部位的结果。 结果 仿真结果表明模型的头部接触力、顶部应变、对撞侧加速度与头部标本冲击实验测得值能较好吻合。 结论 建立的头部有限元模型及采用的仿真方法可满足头部钝器损伤的仿真研究需要。  相似文献   

17.
18.
In this study, a statistical model of cranium geometry for 0- to 3-month-old children was developed by analyzing 11 CT scans using a combination of principal component analysis and multivariate regression analysis. Radial basis function was used to morph the geometry of a baseline child head finite element (FE) model into models with geometries representing a newborn, a 1.5-month-old, and a 3-month-old infant head. These three FE models were used in a parametric study of near-vertex impact conditions to quantify the sensitivity of different material parameters. Finally, model validation was conducted against peak head accelerations in cadaver tests under different impact conditions, and optimization techniques were used to determine the material properties. The results showed that the statistical model of cranium geometry produced realistic cranium size and shape, suture size, and skull/suture thickness, for 0- to 3-month-old children. The three pediatric head models generated by morphing had mesh quality comparable to the baseline model. The elastic modulus of skull had a greater effect on most head impact response measurements than other parameters. Head geometry was a significant factor affecting the maximal principal stress of the skull (p = 0.002) and maximal principal strain of the suture (p = 0.021) after controlling for the skull material. Compared with the newborn head, the 3-month-old head model produced 6.5% higher peak head acceleration, 64.8% higher maximal principal stress, and 66.3% higher strain in the suture. However, in the skull, the 3-month-old model produced 25.7% lower maximal principal stress and 11.5% lower strain than the newborn head. Material properties of the brain had little effects on head acceleration and strain/stress within the skull and suture. Elastic moduli of the skull, suture, dura, and scalp determined using optimization techniques were within reported literature ranges and produced impact response that closely matched those measured in previous cadaver tests. The method developed in this study made it possible to investigate the age effects from geometry changes on pediatric head impact responses. The parametric study demonstrated that it is important to consider the material properties and geometric variations together when estimating pediatric head responses and predicting head injury risks.  相似文献   

19.
The oscillation angle (OsA), which is the sum of the impingement angles on the two sides when the prosthetic neck sways from the neutral axis of the acetabular cup to the liner rim, is one of the most important factors that can affect the range of motion of an artificial hip joint. The aim of this study was to determine the influence of total hip component design on the impingement angle. Our findings show that an increase in cup depth of the liner restricts the motion of the neck and results in a reduced impingement angle, while an increase in chamfer angle increases the impingement angle until it reaches a critical value when a further increase no longer results in an increase in impingement angle. The impingement angle is not only dependent on the head/neck ratio, but also on the head size itself. For most arbitrarily chosen cup depths and chamfer angles, the neck only impacts at one point on the liner. This study proposes a suitable combination of cup depth and chamfer angle and a preferred impact mode, which, if impingement does occur, enables the neck to impinge on the liner rim over a large area. Cup–neck combinations that have an adequate OsA with maximum femoral head coverage are presented.  相似文献   

20.
目的 提出一种气囊式头盔缓冲内衬结构,并分析其对两轮车骑车人头部损伤的防护效果。方法 将气囊式内衬应用于自行车(半盔)和摩托车(全盔)两款典型的两轮车骑车人头盔,通过标准GB 24429-2009和法规ECE R22.05测试工况下的有限元碰撞仿真,获得人体头部模型运动学和生物力学响应,从颅骨骨折和颅脑损伤风险角度对比常规聚苯乙烯泡沫塑料(expanded polystyrene, EPS)头盔,综合评价气囊式头盔的防护性能。结果 当气囊压力为0.06 MPa时,气囊式头盔(半盔/全盔)防护下的人体头部颅骨骨折相关量分别小于120 g和150 g,颅骨骨折风险基本低于40%;颅脑最大主应变均小于0.3,轻度脑损伤风险均低于25%;气囊式头盔防护下的人体颅骨骨折和颅脑损伤风险均低于EPS头盔。结论 本文设计的气囊式头盔具有较好的防护效果,能兼顾颅骨骨折和颅脑损伤防护,可以为新型头盔的设计提供基础示例。损伤风险分析也可为骑车人头部损伤应急诊断提供初步参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号