首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
From the dried leaves, flowers, and twigs of Adina racemosa, five new flavonoid glycosides, quercetin 3-O-alpha-l-rhamnopyranosyl(1-->6)-(3-O-trans-p-coumaroyl)-beta-d-galactopyranoside (1), quercetin 3-O-alpha-l-rhamnopyranosyl(1-->6)-[(4-O-trans-p-coumaroyl)-alpha-l-rhamnopyranosyl(1-->2)]-(4-O-trans-p-coumaroyl)-beta-d-galactopyranoside (2), kaempferol 3-O-alpha-l-rhamnopyranosyl(1-->6)-[(4-O-trans-p-coumaroyl)-alpha-l-rhamnopyranosyl(1--> 2)]-(4-O-trans-p-coumaroyl)-beta-d-galactopyranoside (3), quercetin 3-O-alpha-l-rhamnopyranosyl(1-->6)-[(4-O-trans-p-coumaroyl)-alpha-l-rhamnopyranosyl(1-->2)]-(3-O-trans-p-coumaroyl)-beta-d-galactopyranoside (4), and quercetin 3-O-alpha-l-rhamnopyranosyl(1-->6)-[(4-O-trans-caffeoyl)-alpha-l-rhamnopyranosyl(1-->2)]-(3-O-trans-p-coumaroyl)-beta-d-galactopyranoside (5), and eight known compounds were isolated. The structures of the new compounds were determined by spectroscopic and chemical means. Their inhibitory activities on protein synthesis were assessed. The new glycosides were found to be inhibitors of eukayrotic, but not prokaryotic, protein synthesis.  相似文献   

2.
滇重楼的抗肿瘤活性成分研究   总被引:2,自引:2,他引:2  
目的:研究滇重楼Paris polyphylla Smith var. yunnanensis根茎中具有抗肿瘤作用的活性成分。方法:利用硅胶柱色谱,Sephadex LH-20,反相制备HPLC等手段进行分离纯化,并通过波谱技术进行结构鉴定。采用MTT法对分离到的化合物进行抗肿瘤活性筛选。结果:从醋酸乙酯和正丁醇层中分离得到了6个化合物,鉴定为薯蓣皂苷元-3-O-α-L-呋喃阿拉伯糖基(1→4)-β-D-葡萄糖苷(1)、偏诺皂苷元-3-O-α-L-呋喃阿拉伯糖基(1→4)-β-D-葡萄糖苷(2)、异鼠李素-3-O-β-D-葡萄糖苷(3)、乙基-α-D-呋喃果糖苷(4)、偏诺皂苷元-3-O-α-L-吡喃鼠李糖基(1→4)-[α-L-吡喃鼠李糖基(1→2)]-β-D-葡萄糖苷(5)、偏诺皂苷元-3-O-α-L-吡喃鼠李糖基(1→4)-α-L-吡喃鼠李糖基(1→4)-[α-L-吡喃鼠李糖基(1→2)]-β-D-葡萄糖苷(6)。结论:化合物1~4为首次从滇重楼中分离得到,化合物3和4为首次从重楼属植物中分离得到,化合物5为首次从滇重楼的根茎中分离得到。药理实验表明,化合物1~3,5和6对小鼠肺腺癌细胞LA795都显示出一定的抑制作用,其中化合物5和6最显著。  相似文献   

3.
Three new flavonoid glycosides ( 1- 3), 11-hydroxyhainanolidol ( 4), and a new dibenzylbutyrolactone lignan glycoside ( 5) were isolated from the aerial parts of Cephalotaxus koreana Nakai, along with 19 known flavonoids. The structures of the new compounds were elucidated using spectroscopic evidence, primarily NMR and MS. Twenty-four compounds were isolated, and among these isoscutellarein 5-O-beta-D-glucopyranoside ( 3), apigenin ( 6), kaempferol 3-O-alpha-L-rhamnopyranosyl(1'-->6')-beta-D-glucopyranoside ( 7), tamarixetin 3-O-alpha-L-rhamnopyranosyl(1'-->6')-beta-D-glucopyranoside ( 8), quercetin 3-O-[6'-O-acetyl]-beta-D-glucopyranoside ( 9), and quercetin 3-O-alpha-L-rhamnopyranoside ( 10) showed significant inhibitory activities against osteoclast differentiation at concentrations of 0.1 and 1.0 microg/mL.  相似文献   

4.
Antioxidant flavan-3-ols and flavonol glycosides from Maytenus aquifolium   总被引:1,自引:0,他引:1  
TLC autographic assay revealed, in the EtOAc extract obtained from leaves and root bark of Maytenus aquifolium (Celastraceae), the presence of fi ve compounds exhibiting antioxidant properties towards beta-carotene. They were isolated and identified as epigallocatechin (1), (+) ouratea-catechin (2), proanthocyanidin (3), kaempferol 3-O-alpha-L-rhamnopyranosyl (1-->6)-O-[beta-D-glucopyranosyl (1-->3)-O-alpha-L-rhamnopyranosyl-(1-->2)]-O-beta-D-glucopyranosyl (4) and quercetin 3-O-alpha-L-rhamnopyranosyl (1-->6)-O-[beta-D-glucopyranosyl (1-->3)-O-alpha-L-rhamnopyranosyl-(1-->2)]-O-beta-D-glucopyranosyl (5). The isolates were investigated for their redox properties using cyclic voltammetry and for their radical scavenging abilities through spectrophotometric assay on the reduction of 2,2-diphenyl-pycryl hydrazyl (DPPH). These results were correlated to the inhibition of beta-carotene bleaching on TLC autographic assay and to structural features of the flavonoids.  相似文献   

5.
Five new oleanane-type glycosides (1-5), along with two known triterpene saponins, were isolated from the roots of Pulsatilla patens var. multifida (Ranunculaceae). The structures of the new triterpene saponins were elucidated as 3-O-beta-D-glucopyranosyl(1-->2)-beta-D-galactopyranosyl hederagenin 28-O-beta-D-glucopyranosyl ester (1), hederagenin 3-O-[beta-D-glucopyranosyl(1-->2)][beta-D-glucopyranosyl(1-->6)]-beta -D-galactopyranoside (2), 3-O-beta-D-glucopyranosyl bayogenin 28-O-alpha-L-rhamnopyranosyl(1-->4)-beta-D-glucopyranosyl(1-->6)-beta -D-glucopyranosyl ester (3), 3-O-beta-D-glucopyranosyl(1-->2)-beta-D-galactopyranosyl oleanolic acid 28-O-alpha-L-rhamnopyranosyl(1-->4)-beta-D-glucopyranosyl(1-->6)-beta -D-glucopyranosyl ester (4), and 3-O-[beta-D-glucopyranosyl(1-->2)][beta-D-glucopyranosyl(1-->6)]-beta -D-galactopyranosyl hederagenin 28-O-alpha-L-rhamnopyranosyl(1-->4)-beta-D-glucopyranosyl(1-->6)-beta -D-glucopyranosyl ester (5). Structure elucidation was accomplished by 1D and 2D NMR (HMQC, HMBC, and ROESY) methods, FABMS, and hydrolysis.  相似文献   

6.
Three new glycosides, pinocembrin 7-O-apiosyl(1-->5)apiosyl(1-->2)-beta-D-glucopyranoside (1), 2',3',4',3' '-tetramethoxy-1,3-diphenylpropane 5',4' '-di-O-beta-D-glucopyranoside (2), and rhamnocitrin 3-O-apiosyl(1-->5)apiosyl(1-->2)-[alpha-L-rhamnopyranosyl(1-->6)]-beta-D-glucopyranoside (3), were isolated from Viscum angulatumalong with viscumneoside V, naringenin, and homoeriodictyol. Their structures were established by spectral and chemical methods.  相似文献   

7.
Four new isoflavone triglycosides from Sophora japonica   总被引:2,自引:0,他引:2  
Four new isoflavone triglycosides, genistein 7-O-beta-D-glucopyranoside-4'-O-[(alpha-L-rhamnopyranosyl)-(1-->2)-beta-D-glucopyranoside] (1), genistein 7-O-beta-D-glucopyranoside-4'-O-[(beta-D-glucopyranosyl)-(1-->2)-beta-D-glucopyranoside] (2), genistein 7-O-alpha-L-rhamnopyranoside-4'-O-[(alpha-L-rhamnopyranosyl)-(1-->2)-beta-D-glucopyranoside] (3), and genistein 7-O-alpha-L-rhamnopyranoside-4'-O-[(beta-D-glucopyranosyl)-(1-->2)-beta-D-glucopyranoside] (4), together with nine known compounds, namely, genistein 7-O-beta-D-glucopyranoside-4'-O-beta-D-glucopyranoside, sophorabioside, prunetin 4'-O-beta-D-glucopyranoside, sophororicoside, genistin, rutin, kaempferol 3-O-beta-rutinoside, quercetin 3-O-beta-D-glucopyranoside, and kaempferol 3-O-beta-D-glucopyranoside, were isolated from the pericarps of Sophora japonica. The structures of 1-4 were determined by spectroscopic methods.  相似文献   

8.
The structures of madhucosides A (1) and B (2), isolated from the bark of Madhuca indica, were established as 3-O-beta-D-apiofuranosyl(1-->2)-beta-D-glucopyranosyl-28-O-[beta-D-xylopyranosyl(1-->2)-[alpha-L-rhamnopyranosyl(1-->4)]-beta-D-glucopyranosyl(1--> 3)-alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranosyl]protobassic acid and 3-O-beta-D-apiofuranosyl(1-->2)-beta-D-glucopyranosyl-28-O-[beta-D-xylopyranosyl(1-->2)-[alpha-L-rhamnopyranosyl(1-->4)]-beta-D-glucopyranosyl(1-->3)-alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranosyl]protobassic acid, respectively. These two compounds showed significant inhibitory effects on both superoxide release from polymorphonuclear cells in a NBT reduction assay and hypochlorous acid generation from neutrophils assessed in a luminol-enhanced chemiluminescence assay.  相似文献   

9.
Two new myricetin glycosides, myricetin 7-O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranoside (1) and myricetin 7-O-alpha-L-rhamnopyranosyl-(1-->6)-beta-D-glucopyranoside (2), together with the known compounds quercetin 3-O-beta-D-glucopyranoside (3), quercetin 3-O-alpha-L-rhamnopyranoside (4), quercetin 3-O-beta-D-galactopyranoside (5), methyl gallate (6), isovanillin (7), 4-hydroxymethylbenzoate (8), 3,4-dihydroxymethylbenzoate (9), and caffeoyl aldehyde (10) were isolated from the leaves of Tachigalia paniculata. The structures of these compounds were determined by spectroscopic methods. Their antioxidant activity was determined by measuring free-radical scavenging effects using three different assays, namely, the Trolox Equivalent Antioxidant Capacity (TEAC) assay, the coupled oxidation of beta-carotene and linoleic acid (autoxidation assay), and the inhibition of xanthine oxidase activity. Compounds 1, 2, and 6 showed activity in the TEAC test, compounds 5-7 and 10 were moderately active in the autoxidation assay, while compounds 1 and 2 were the most potent of the isolates in the xanthine oxidase test.  相似文献   

10.
Triterpene saponins from the leaves of Ilex kudingcha   总被引:3,自引:0,他引:3  
Nine new triterpene saponins, ilekudinosides K-S (1-9), and eight known triterpene saponins were isolated from the 70% ethanol extract of the leaves of Ilex kudingcha. The new saponins were characterized as 3-O-alpha-L-rhamnopyranosyl(1-->2)-beta-D-glucopyranosyl-alpha-kudinlactone (1), 3-O-beta-D-glucopyranosyl(1-->3)-alpha-L-arabinopyranosyl-beta-kudinlactone (2), 3-O-alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranosyl-gamma-kudinlactone (3), 3-O-beta-D-glucopyranosyl(1-->2)-beta-D-glucopyranosyl-alpha-kudinlactone (4), 3-O-beta-D-glucopyranosyl(1-->2)-alpha-L-arabinopyranosyl-alpha-kudinlactone (5), 3-O-beta-D-glucopyranosyl(1-->3)-alpha-L-arabinopyranosyl-alpha-kudinlactone (6), 3-O-alpha-L-rhamnopyranosyl(1-->2)-beta-D-glucopyranosyl-beta-kudinlactone (7), 3-O-alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranosyl-beta-kudinlactone (8), and 3-O-alpha-L-rhamnopyranosyl(1-->2)-beta-D-glucopyranosyl-gamma-kudinlactone (9), respectively. The structures and stereochemistry of compounds 1-9 were elucidated by spectroscopic data interpretation and chemical degradation.  相似文献   

11.
Six new apiosyl-(1-->6)-glucosyl isoflavones (1-6) and four known ones were isolated from the stems of Glycosmis pentaphylla. The structures of the new glycosides are 3',7-dihydroxy-4',5,6-trimethoxyisoflavone 7-O-(5-O-trans-p-coumaroyl)-beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside (1), 2',7-dihydroxy-4',5',5,6-tetramethoxyisoflavone 7-O-(5-O-trans-p-coumaroyl)-beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside (2), 2',7-dihydroxy-4',5',5,6-tetramethoxyisoflavone 7-O-beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside (3), 7-hydroxy-4',8-dimethoxyisoflavone 7-O-beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside (4), 7-hydroxy-4',6-dimethoxyisoflavone 7-O-beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside (5), and 4',5-dihydroxy-3',7-dimethoxyisoflavone 4'-O-beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside (6). Their structures were established primarily by NMR experiments and chemical methods.  相似文献   

12.
Antifungal activity of natural products is being studied widely. Saponins are known to be antifungal and antibacterial. We used bioassay-guided fractionation to have isolated eight steroid saponins from Tribulus terrestris L., which were identified as hecogenin-3-O-beta-D-glucopyranosyl (1-->4)-beta-D-galactopyranoside (TTS-8), tigogenin-3-O-beta-D-glucopyranosyl (1-->4)-beta-D-galactopyranoside (TTS-9), hecogenin-3-O-beta-D-glucopyranosyl (1-->2)-beta-D-glucopyranosyl (1-->4)-beta-D-galactopyranoside (TTS-10), hecogenin-3-O-beta-D-xylopyranosyl (1-->3)-beta-D-glucopyranosyl (1-->4)-beta-D-galactopyranoside (TTS-11), tigogenin-3-O-beta-D-xylopyranosyl (1-->2)-[beta-D-xylopyranosyl (1-->3)]-beta-D-glucopyranosyl (1-->4)-[alpha-L-rhamnopyranosyl (1-->2)]-beta-D-galactopyranoside (TTS-12), 3-O-[beta-D-xylopyranosyl (1-->2)-[beta-D-xylopyranosyl (1-->3)]-beta-D-glucopyranosyl (1-->4)-[alpha-L-rhamnopyranosyl (1-->2)]-beta-D-galactopyranosyl]-26-O-beta-D-glucopyranosyl-22-methoxy-(3beta,5alpha,25R)-furostan-3,26-diol (TTS-13), hecogenin-3-O-beta-D-glucopyranosyl (1-->2)-[beta-D-xylopyranosyl (1-->3)]-beta-D-glucopyranosyl (1-->4)-beta-D-galactopyranoside (TTS-14), tigogenin-3-O-beta-D-glucopyranosyl (1-->2)-[beta-D-xylopyranosyl (1-->3)]-beta-D-glucopyranosyl (1-->4)-beta-D-galactopyranoside (TTS-15). The in vitro antifungal activities of the eight saponins against five yeasts, Candida albicans, Candida glabrata, Candida parapsilosis, Candida tropicalis and Cryptococcus neoformans were studied using microbroth dilution assay. In vivo activity of TTS-12 in a Candida albicans vaginal infection model was studied in particular. The results showed that TTS-12 and TTS-15 were very effective against several pathogenic candidal species and Cryptococcus neoformans in vitro. It is noteworthy that TTS-12 and TTS-15 were very active against Candida albicans (MIC(80) = 10 and 2.3 microg/mL) and Cryptococcus neoformans (MIC(80) = 1.7 and 6.7 microg/mL). Phase contrast microscopy showed that TTS-12 inhibited hyphal formation, an important virulence factor of Candida albicans, and transmission electron microscopy showed that TTS-12 destroyed the cell membrane of Candida albicans. In conclusion, TTS-12 has significant in vitro and in vivo antifungal activity, weakening the virulence of Candida albicans and killing fungi through destroying the cell membrane.  相似文献   

13.
地乌中的三萜皂苷类成分   总被引:1,自引:1,他引:1  
目的:研究地乌Anemone flaccida中的化学成分。方法:采用硅胶柱色谱、凝胶柱色谱、反相HPLC制备色谱等多种方法分离化合物,采用波谱方法鉴定化合物的结构。结果:从地乌根茎中分离得到12个三萜类化合物,分别为齐墩果酸(1),齐墩果酸3-O-β-D-吡喃葡萄糖-(1→2)-β-D-吡喃木糖苷(2),五加苷K(3),齐墩果酸3-O-α-L-吡喃鼠李糖-(1→2)-β-D-吡喃木糖苷(4),齐墩果酸3-O-β-D-吡喃葡萄糖-(1→2)-α-L-吡喃阿拉伯糖苷(5),齐墩果酸3-O-βD--吡喃葡萄糖醛酸(6),齐墩果酸3-O-β-D-吡喃葡萄糖醛酸甲酯(7),齐墩果酸28-O-α-L-吡喃鼠李糖-(1→4)-β-D-吡喃葡萄糖-(1→6)-β-D-吡喃葡萄糖苷(8),齐墩果酸3-O-β-D-吡喃葡萄糖醛酸28-O-α-L-吡喃鼠李糖-(1→4)-β-D-吡喃葡萄糖-(1→6)-β-D-吡喃葡萄糖苷(9),齐墩果酸3-O-β-D-吡喃葡萄糖醛酸甲酯28-O-α-L-吡喃鼠李糖-(1→4)-β-D-吡喃葡萄糖-(1→6)-β-D-吡喃葡萄糖苷(10),齐墩果酸3-O-β-D-吡喃葡萄糖-(1→2)-β-D-吡喃木糖28-O-α-L-吡喃鼠李糖-(1→4)-β-D-吡喃葡萄糖-(1→6)-β-D-吡喃葡萄糖苷(11),齐墩果酸3-O-α-L-吡喃鼠李糖-(1→2)-α-L-吡喃阿拉伯糖28-O-α-L-吡喃鼠李糖-(1→4)-β-D-吡喃葡萄糖-(1→6)-β-D-吡喃葡萄糖苷(12)。结论:化合物5~8,10,12为首次从该植物中分离得到;化合物2,5,11对Hela,BEL-7402和HL-60细胞具有细胞毒性。  相似文献   

14.
藏药五脉绿绒蒿中非生物碱成分   总被引:6,自引:2,他引:6  
目的:研究藏药五脉绿绒蒿Meconopsis quintuplinervia的化学成分。方法:应用色谱技术分离纯化,用波谱学方法确定化合物结构。结果:从乙醇提取物中分离得到12个化合物,分别鉴定为:槲皮素-3-O-β-D-葡萄糖苷(Ⅰ),槲皮素-3-O-[β-D-半乳糖(1→6)]-β-D-葡萄糖苷(Ⅱ),山柰素-3-O-[β-D-葡萄糖(1→2)]-β-D-葡萄糖苷(Ⅲ),异鼠李黄素-3-O-[β-D-半乳糖苷(1→6)]-β-D-葡萄糖(Ⅳ),咖啡酸(Ⅴ),原儿茶酸(Ⅵ),对羟基肉桂酸(Ⅶ),2-(3,4-二羟苯基)-乙醇β-D-吡喃葡萄糖苷(Ⅷ),对羟基苯甲酸β-D-吡喃葡萄糖酯苷(Ⅸ),肉桂酸4-O-β-D-吡喃葡萄糖苷(Ⅹ),5,7-二羟基色原酮(Ⅺ),胡萝卜苷(Ⅻ)。结论:除Ⅵ和Ⅻ外,其余10个化合物均为首次从该属植物中发现。  相似文献   

15.
山里红叶化学成分研究   总被引:13,自引:2,他引:11  
刘荣华  余伯阳 《中药材》2006,29(11):1169-1173
目的:研究山里红(Crataegus pinnatifidaBge.var.majorN.E.B r.)叶中的化学成分。方法:用硅胶柱色谱、大孔树脂柱色谱和Sephadex LH-20柱色谱等技术进行分离纯化,根据理化性质和光谱数据进行结构鉴定。结果:得到14个化合物,分别为槲皮素Quercetin(1),金丝桃苷Hyperoside(2),槲皮素3-O-β-D-葡萄糖苷Quercetin 3-O-β-D-glucoside(3),芦丁Rutin(4),槲皮素3-O-[α-L-鼠李糖(1-4)-α-L-鼠李糖(1-6)-β-葡萄糖苷]Quercetin 3-O-[-αL-rhamnopyransoyl(1-4)--αL-rhamnopyranosyl-(1-6)--βglucopyranoside](5),牡荆素V itexin(6),6″-O-乙酰基-牡荆素6-″O-acetyl-vitexin(7),牡荆素2-″O-鼠李糖苷V itexin 2-″O-rhamnoside(8),牡荆素4″-O-葡萄糖苷V itexin4-″O-glucoside(9),绿原酸Chlorogen ic ac id(10),熊果酸Ursolic ac id(11),β-谷甾醇-βS itosterol(12),β-胡萝卜苷β-Dau-costerol(13),正三十烷醇n-Triacontanol(14)。结论:5和14为首次从该属植物中分得。  相似文献   

16.
Five dammarane-type saponins were isolated by means of centrifugal partition chromatography from the leaves of Zizyphus lotus. Their structures were elucidated using a combination of 1D and 2D 1H and 13C NMR spectra and mass spectroscopy. One of these glycosides is the known jujuboside B (5). Three are new jujubogenin glycosides, identified as 3-O-alpha-L-rhamnopyranosyl-(1-->6)-beta-D-glucopyranosyljujubogenin-20-O-(2,3,4-O-triacetyl)-alpha-L-rhamnopyranoside (1), 3-O-alpha-L-rhamnopyranosyl-(1-->6)-beta-D-glucopyranosyljujubogenin-20-O-alpha-L-rhamnopyranoside (2), and 3-O-alpha-L-rhamnopyranosyl-(1-->2)-[(4-sulfo)-beta-D-glucopyranosyl-(1-->3)]-alpha-L-arabinopyranosyljujubogenin (3). The last is a new sulfated derivative of jujubasaponine IV, identified as 3-O-alpha-L-rhamnopyranosyl-(1-->2)-[(4-sulfo)-beta-D-glucopyranosyl-(1-->3)]-beta-D-galactopyranosyl-(20R,22R)-16beta,22:16alpha,30-diepoxydammar-24-ene-3beta,20-diol (4).  相似文献   

17.
The three major flavonoids isolated from Arabidopsis thaliana plants grown in the greenhouse were identified by means of spectroscopic analysis (UV, NMR, MS) and chiral capillary zone electrophoresis as the novel kaempferol 3-O-beta-[beta-D-glucopyranosyl(1-->6)D-glucopyranoside]-7-O-alpha-L- rhamnopyranoside (1), kaempferol 3-O-beta-D-glucopyranoside-7-O-alpha-L-rhamnopyranoside (2), and kaempferol 3-O-alpha-L-rhamnopyranoside-7-O-alpha-L-rhamnopyranoside (3). Comprehensive NMR studies including selective 1D and gradient-enhanced 2D techniques were applied in order to achieve full signal assignment and definitive proof of linkage for compound 1.  相似文献   

18.
Three genuine saponins, named kinmoonosides A-C (1-3), have been isolated, together with a new monoterpenoid (4), from a methanolic extract of the fruits of Acacia concinna. The structures of kinmoonosides A-C were elucidated on the basis of spectral analysis as 3-O-?alpha-L-arabinopyranosyl(1-->6)-[beta-D-glucopyranosyl(1-->2) ]-b eta-D-glucopyranosyl?-21-O-?(6R, 2E)-2-hydroxymethyl-6-methyl-6-O-[4-O-(2'E)-6'-hydroxyl-2'-hydroxymet hyl-6'-methyl-2',7'-octadienoyl-beta-D-quinovopyranosyl]-2, 7-octadienoyl?acacic acid 28-O-alpha-L-arabinofuranosyl(1-->4)-[beta-D-glucopyranosyl(1-->3)]-a lpha-L-rhamnopyranosyl(1-->2)-beta-D-glucopyranosyl ester (1); 3-O-?alpha-L-arabinopyranosyl(1-->6)-[beta-D-glucopyranosyl(1-->2) ]-b eta-D-glucopyranosyl?-21-O-?(6S, 2E)-2-hydroxymethyl-6-methyl-6-O-[4-O-(2'E)-6'-hydroxyl-2'-hydroxymet hyl-6'-methyl-2',7'-octadienoyl-beta-D-quinobopyranosyl]-2, 7-octadienoyl?acacic acid 28-O-alpha-L-arabinofuranosyl(1-->4)-[beta-D-glucopyranosyl(1-->3)]-a lpha-L-rhamnopyranosyl(1-->2)-beta-D-glucopyranosyl ester (2); and 3-O-?alpha-L-arabinopyranosyl(1-->6)-[beta-D-glucopyranosyl(1-->2) ]-b eta-D-glucopyranosyl?-21-O-[(2E)-6-hydroxyl-2-hydroxymethyl-6-methyl- 2,7-octadienoyl]acacic acid 28-O-alpha-L-arabinofuranosyl(1-->4)-[beta-D-glucopyranosyl(1-->3)]-a lpha-L-rhamnopyranosyl(1-->2)-beta-D-glucopyranosyl ester (3), respectively. The new monoterpenoid 4 was determined as 4-O-[(2E)-6-hydroxyl-2-hydroxymethyl-6-methyl-2, 7-octadienoyl]-D-quinovopyranose. Compounds 1-3 showed significant cytotoxicity against human HT-1080 fibrosarcoma cells.  相似文献   

19.
The methanolic extract from the fresh flowers of Prunus mume exhibited inhibitory effects against aldose reductase and platelet aggregation. From the methanolic extract, two new flavonol oligoglycosides, 2' '-O-acetylrutin and 2' '-O-acetyl-3'-O-methylrutin, and two new polyacylated sucroses, prunoses I and II, were isolated together with 11 known constituents. The structures of 2' '-O-acetylrutin, 2' '-O-acetyl-3'-O-methylrutin, and prunoses I and II were determined on the basis of chemical and physicochemical evidence as quercetin 3-O-alpha-L-rhamnopyranosyl(1-->6)-2' '-O-acetyl-beta-D-glucopyranoside, 3'-O-methylquercetin 3-O-alpha-L-rhamnopyranosyl(1-->6)-2' '-O-acetyl-beta-D-glucopyranoside, 1,4,3',4',6'-penta-O-acetyl-6-O-p-coumaroylsucrose, and 1,3',4',6'-tetra-O-acetyl-6-O-p-coumaroylsucrose, respectively. The flavonol glycosides and prunose I were found to inhibit aldose reductase, while prunoses I and II inhibited platelet aggregation induced by thrombin.  相似文献   

20.
Four new oleanane-type triterpenoidal glycosides, named gleditsiosides A-D (1-4), were isolated from the anomalous fruits of Gleditsia sinensis. Using modern NMR techniques, including DQF-COSY, HETCOR, HOHAHA, HMBC, and ROESY experiments and MS analysis as well as chemical methods, their structures were determined as 3-O-beta-D-xylopyranosyl-(1-->2)-alpha-L-arabinopyranosyl-(1-->6)- bet a-D-glucopyranosyl oleanolic acid 28-O-beta-D-xylopyranosyl-(1-->3)-beta-D-xylopyranosyl-(1-->4)-alpha- L-rhamnopyranosyl-(1-->2)-[(6S,2E)-6-hydroxy-2,6-dimethyl-2, 7-octadienoyl-(1-->6)]-beta-D-glucopyranosyl ester (1); 3-O-beta-D-xylopyranosyl-(1-->2)-alpha-L-arabinopyranosyl-(1-->6)- bet a-D-glucopyranosyl oleanolic acid 28-O-beta-D-xylopyranosyl-(1-->3)-beta-D-xylopyranosyl-(1-->4)-alpha- L-rhamnopyranosyl-(1-->2)-[(2E)-2-hydroxylmethyl-6-hydroxy-6-methy l-2 ,7-octadienoyl-(1-->6)]-beta-D-glucopyranosyl ester (2); 3-O-beta-D-xylopyranosyl-(1-->2)-alpha-L-arabinopyranosyl-(1-->6)- bet a-D-glucopyranosyl echinocystic acid 28-O-beta-D-xylopyranosyl-(1-->3)-beta-D-xylopyranosyl-(1-->4)-[beta- D-galactopyranosyl-(1-->2)]-alpha-L-rhamnopyranosyl-(1-->2)-[(2E)-2-h ydroxylmethyl-6-hydroxy-6-methyl-2, 7-octadienoyl-(1-->6)]-beta-D-glucopyranosyl ester (3); and 3-O-beta-D-xylopyranosyl-(1-->2)-alpha-L-arabinopyranosyl-(1-->6)- bet a-D-glucopyranosyl echinocystic acid 28-O-beta-D-xylopyranosyl-(1-->3)-beta-D-xylopyranosyl-(1-->4)-[beta- D-galactopyranosyl-(1-->2)]-alpha-L-rhamnopyranosyl-(1-->2)-[(6S, 2E)-6-hydroxy-2,6-dimethyl-2, 7-octadienoyl-(1-->6)]-beta-D-glucopyranosyl ester (4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号