首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neural crest patterning and the evolution of the jaw   总被引:1,自引:0,他引:1  
Kimmel CB  Miller CT  Keynes RJ 《Journal of anatomy》2001,199(PT 1-2):105-120
Here we present ideas connecting the behaviour of the cranial neural crest during development with the venerable, perhaps incorrect, view that gill-supporting cartilages of an ancient agnathan evolved into the skeleton of an early gnathostome's jaw. We discuss the pattern of migration of the cranial neural crest ectomesenchyme in zebrafish, along with the subsequent arrangement of postmigratory crest and head mesoderm in the nascent pharyngeal segments (branchiomeres), in diverse gnathostomes and in lampreys. These characteristics provide for a plausible von Baerian explanation for the problematic inside-outside change in topology of the gills and their supports between these 2 major groups of vertebrates. We consider it likely that the jaw supports did indeed arise from branchiomeric cartilages.  相似文献   

2.
Neural crest patterning and the evolution of the jaw   总被引:4,自引:2,他引:2  
Here we present ideas connecting the behaviour of the cranial neural crest during development with the venerable, perhaps incorrect, view that gill-supporting cartilages of an ancient agnathan evolved into the skeleton of an early gnathostome's jaw. We discuss the pattern of migration of the cranial neural crest ectomesenchyme in zebrafish, along with the subsequent arrangement of postmigratory crest and head mesoderm in the nascent pharyngeal segments (branchiomeres), in diverse gnathostomes and in lampreys. These characteristics provide for a plausible von Baerian explanation for the problematic inside-outside change in topology of the gills and their supports between these 2 major groups of vertebrates. We consider it likely that the jaw supports did indeed arise from branchiomeric cartilages.  相似文献   

3.
4.
To examine the roles of activin type II receptor signaling in craniofacial development, full-length zebrafish acvr2a and acvr2b clones were isolated. Although ubiquitously expressed as maternal mRNAs and in early embryogenesis, by 24 hr postfertilization (hpf), acvr2a and acvr2b exhibit restricted expression in neural, hindbrain, and neural crest cells (NCCs). A morpholino-based targeted protein depletion approach was used to reveal discrete functions for each acvr2 gene product. The acvr2a morphants exhibited defects in the development of most cranial NCC-derived cartilage, bone, and pharyngeal tooth structures, whereas acvr2b morphant defects were largely restricted to posterior arch structures and included the absence and/or aberrant migration of posterior NCC streams, defects in NCC-derived posterior arch cartilages, and dysmorphic pharyngeal tooth development. These studies revealed previously uncharacterized roles for acvr2a and acvr2b in hindbrain and NCC patterning, in NCC derived pharyngeal arch cartilage and joint formation, and in tooth development.  相似文献   

5.
The cephalic neural crest produces streams of migrating cells that populate pharyngeal arches and a more rostral, premandibular domain, to give rise to an extensive ectomesenchyme in the embryonic vertebrate head. The crest cells forming the trigeminal stream are the major source of the craniofacial skeleton; however, there is no clear distinction between the mandibular arch and the premandibular domain in this ectomesenchyme. The question regarding the evolution of the gnathostome jaw is, in part, a question about the differentiation of the mandibular arch, the rostralmost component of the pharynx, and in part a question about the developmental fate of the premandibular domain. We address the developmental definition of the mandibular arch in connection with the developmental origin of the trabeculae, paired cartilaginous elements generally believed to develop in the premandibular domain, and also of enigmatic cartilaginous elements called polar cartilages. Based on comparative embryology, we propose that the mandibular arch ectomesenchyme in gnathostomes can be defined as a Dlx1-positive domain, and that the polar cartilages, which develop from the Dlx1-negative premandibular ectomesenchyme, would represent merely posterior parts of the trabeculae. We also show, in the lamprey embryo, early migration of mandibular arch mesenchyme into the premandibular domain, and propose an updated version of the heterotopy theory on the origin of the jaw.  相似文献   

6.
It has been demonstrated that the septation of the outflow tract of the heart is formed by the cardiac neural crest. Ablation of this region of the neural crest prior to its migration from the neural fold results in anomalies of the outflow and inflow tracts of the heart and the aortic arch arteries. The objective of this study was to examine the migration and distribution of these neural crest cells from the pharyngeal arches into the outflow region of the heart during avian embryonic development. Chimeras were constructed in which each region of the premigratory cardiac neural crest from quail embryos was implanted into the corresponding area in chick embryos. The transplantations were done unilaterally on each side and bilaterally. The quail-chick chimeras were sacrificed between Hamburger-Hamilton stages 18 and 25, and the pharyngeal region and outflow tract were examined in serial paraffin sections to determine the distribution pattern of quail cells at each stage. The neural crest cells derived from the presumptive arch 3 and 4 regions of the neuraxis occupied mainly pharyngeal arches 3 and 4 respectively, although minor populations could be seen in pharyngeal arches 2 and 6. The neural crest cells migrating from the presumptive arch 6 region were seen mainly in pharyngeal arch 6, but they also populated pharyngeal arches 3 and 4. Clusters of quail neural crest cells were found in the distal outflow tract at stage 23.  相似文献   

7.
The type I TGFbeta family member receptor alk8 acts in bone morphogenetic protein (BMP) signaling pathways to establish dorsoventral patterning in the early zebrafish embryo. Here, we present evidence that alk8 is required for neural crest cell (NCC) formation and that alk8 signaling gradients direct the proper patterning of premigratory NCCs. We extend our previous functional studies of alk8 to demonstrate that ectopic expression of constitutively active and dominant negative Alk8, consistently results in more medially or laterally positioned premigratory NCCs, respectively. We also demonstrate that patterning defects in premigratory NCCs, induced by alk8 misexpression, correlate with subsequent defects in NCC-derived pharyngeal arch cartilages. Furthermore, an anteroposterior effect is revealed, where overexpression of Alk8 more severely affects anterior arch cartilages and decreased Alk8 activity more severely affects posterior arch cartilage formation. Ectopic expression studies of alk8 are supported by analyses of zygotic and maternal-zygotic laf/alk8 mutants and of several BMP pathway mutants. Pharyngeal mesodermal and endodermal defects in laf/alk8 mutants suggest additional roles for alk8 in patterning of these tissues. Our results provide insight into alk8-mediated BMP signaling gradients and the establishment of premigratory NCC mediolateral positioning, and extend the model for BMP patterning of the neural crest to include that of NCC-derived pharyngeal arch cartilages.  相似文献   

8.
CHARGE syndrome is a congenital disorder with multiple malformations in the craniofacial structures, and cardiovascular and genital systems, which are mainly affected by neural crest defects caused by loss‐of‐function mutations within chromodomain helicase DNA‐binding protein 7 (CHD7). However, many patients with CHARGE syndrome test negative for CHD7. Semaphorin 3E (sema3E) is a gene reported to be mutated in patients with CHARGE syndrome. However, its role in the pathogenesis of CHARGE syndrome has not been verified experimentally. Here, we report that the knockdown of sema3E results in severe craniofacial malformations, including small eyes, defective cartilage and an abnormal number of otoliths in zebrafish embryos, which resemble the major features of CHARGE syndrome. Further analysis reveals that the migratory cranial neural crest cells are scattered in the region of the hindbrain, and the postmigratory neural crest cells are reduced in the pharyngeal arches upon sema3E knockdown. Notably, immunostaining and time‐lapse imaging analyses of a neural crest cell‐labelled transgenic fish line, sox10:EGFP, show that the migration of cranial neural crest cells is severely impaired, and many of these cells are misrouted upon sema3E knockdown. Furthermore, the sox10‐expressing cranial neural crest cells are scattered in chd7 homozygous mutants, which phenocopied the phenotype in sema3E morphants. Overexpression of sema3E rescues the phenotype of scattered cranial neural crest cells in chd7 homozygotes, indicating that chd7 may control the expression of sema3E to regulate cranial neural crest cell migration. Collectively, our data demonstrate that sema3E is involved in the pathogenesis of CHARGE syndrome by modulating cranial neural crest cell migration.  相似文献   

9.
TBX1 is the major candidate gene for DiGeorge syndrome (DGS). Mouse studies have shown that the Tbx1 gene is haploinsufficient, as expected for a DGS candidate gene, and that it is required for the development of pharyngeal arches and pouches, as predicted by the DGS clinical phenotype. However, a detailed analysis of the cardiovascular phenotype associated with Tbx1 mutations has not been reported. Here we show that Tbx1 deficiency causes a number of distinct vascular and heart defects, suggesting multiple roles in cardiovascular development - specifically formation and growth of the pharyngeal arch arteries, growth and septation of the outflow tract of the heart, interventricular septation, and conal alignment. Comparison of phenotype and gene expression using a Tbx1-lacZ reporter allele supports a cell-autonomous function in the growth of the pharyngeal apparatus, and a cell non-autonomous function in the growth and early remodeling of the pharyngeal arch arteries. Our data do not support a direct role of neural crest cells in the pathogenesis of the Tbx1 mutant phenotype; however, these cells, and the cranial nerves, are misdirected. We hypothesize that this is due to the lack of a guidance role from the pouch endoderm, which is missing in these mutants.  相似文献   

10.
Significance of the cranial neural crest.   总被引:1,自引:0,他引:1  
The cranial neural crest has long been viewed as being of particular significance. First, it has been held that the cranial neural crest has a morphogenetic role, acting to coordinate the development of the pharyngeal arches. By contrast, the trunk crest seems to play a more subservient role in terms of embryonic patterning. Second, the cranial crest not only generates neurons, glia, and melanocytes, but additionally forms skeletal derivatives (bones, cartilage, and teeth, as well as smooth muscle and connective tissue), and this potential was thought to be a unique feature of the cranial crest. Recently, however, several studies have suggested that the cranial neural crest may not be so influential in terms of patterning, nor so exceptional in the derivatives that it makes. It is now becoming clear that the morphogenesis of the pharyngeal arches is largely driven by the pharyngeal endoderm. Furthermore, it is now apparent that trunk neural crest cells have skeletal potential. However, it has now been demonstrated that a key role for the cranial neural crest streams is to organise the innervation of the hindbrain by the cranial sensory ganglia. Thus, in the past few years, our views of the significance of the cranial neural crest for head development have been altered. Developmental Dynamics 229:5-13, 2004.  相似文献   

11.
Matrix metalloproteinase-type 2 (MMP-2) degrades extracellular matrix, mediates cell migration and tissue remodeling, and is implicated in mediating neural crest (NC) and cardiac development. However, there is little information regarding the expression and distribution of MMP-2 during cardiogenesis and NC morphogenesis. To elucidate the role of MMP-2, we performed a comprehensive study on the temporal and spatial distribution of MMP-2 mRNA and protein during critical stages of early avian NC and cardiac development. We found that ectodermally derived NC cells did not express MMP-2 mRNA during their initial formation and early emigration but encountered MMP-2 protein in basement membranes deposited by mesodermal cells. While NC cells did not synthesize MMP-2 mRNA early in migration, MMP-2 expression was seen in NC cells within the cranial paraxial and pharyngeal arch mesenchyme at later stages but was never detected in NC-derived neural structures. This suggested NC MMP-2 expression was temporally and spatially dependent on tissue interactions or differed within the various NC subpopulations. MMP-2 was first expressed within cardiogenic splanchnic mesoderm before and during the formation of the early heart tube, at sites of active pharyngeal arch and cardiac remodeling, and during cardiac cushion cell migration. Collectively, these results support the postulate that MMP-2 has an important functional role in early cardiogenesis, NC cell and cardiac cushion migration, and remodeling of the pharyngeal arches and cardiac heart tube.  相似文献   

12.
The distribution and migration of the cardiac neural crest was studied in chick embryos from stages 11 to 17 that were immunochemically stained in whole-mount and sectioned specimens with a monoclonal antibody, HNK-1. The following results were obtained: (1) The first phase of the migration in the cardiac crest follows the dorsolateral pathway beneath the ectoderm. (2) In the first site of arrest, the cardiac crest forms a longitudinal mass of neural-crest cells, called in the present study, the circumpharyngeal crest; this mass is located dorsolateral to the dorsal edge of the pericardium (pericardial dorsal horn) where splanchic and somatic lateral mesoderm meet. (3) A distinctive strand of neural-crest cells, called the anterior tract, arises from the mid-otic level and ends in the circumpharyngeal crest. (4) By stage 16, after the degeneration of the first somite, another strand of neural-crest cells, called the posterior tract, appears dorsal to the circumpharyngeal crest. It forms an arch-like pathway along the anterior border of the second somite. (5) The seeding of the pharyngeal ectomesenchyme takes place before the formation of pharyngeal arches in the postotic area, i.e., the crest cells are seeded into the lateral body wall ventrally from the circumpharyngeal crest; and, by the ventralward regression of the pericardial dorsal horn, lateral expansion of pharyngeal pouch, and caudal regression of the pericardium, the crest cell population is pushed away by the pharyngeal pouch. Thus the pharyngeal arch ectomesenchyme is segregated. (6) By stage 14, at the occipital somite level, ventrolateral migration of the neural crest is observed within the anterior half of each somite. Some of these crest cells are continuos with the caudal portion of the circumpharyngeal crest. An early contribution to the enteric neuroblasts is apparent in this area.  相似文献   

13.
The cardiac neural crest is located in a transitional area on the neuraxis between trunk and cephalic regions and gives rise to both the dorsolateral and ventrolateral crest cell populations. Around stage 18 of chick development, a mass of E/C8+ cells surrounds the postotic pharyngeal arches and forms a crescent-shaped arch, termed the circumpharyngeal ridge. Using immunohistochemistry and quail-chick chimeras, it was determined that the E/C8+ cell mass located in the circumpharyngeal ridge derives from the dorsolateral component of the cardiac neural crest. The ventrolateral cell population of the cardiac crest is located more medially and shows long-persistent HNK-1 immunoreactivity dorsolateral to the foregut. The crest cells that populate the gut arise from the caudal portion of the circumpharyngeal crest and are always located caudal to the caudal-most pharyngeal ectomesenchyme. Circumpharyngeal crest cells continuously populate the pharyngeal arch ectomesenchyme and enteric nervous system on the lateral side of the foregut wall, as well as the hypoglossal pathway which develops within the ventral portion of the circumpharyngeal ridge. E/C8 and HNK-1 immunoreactivity are associated with the cells migrating via the dorsolateral (circumpharyngeal) and ventrolateral pathways, respectively, with one exception: there is a population of putative crest cells along the proximal course of the vagal intestinal branch that shows both immunoreactivities around stage 20. DiI labeling of the cells in the circumpharyngeal ridge suggests that the cells are contributed from the circumpharyngeal ridge to this population. Thus, the distribution of the circumpharyngeal crest cells and their derivatives coincides with the peripheral branch distribution of the cranial nerves IX, X, and XII, whose development is selectively affected in the absence of the cardiac neural crest, the source of the circumpharyngeal crest.  相似文献   

14.
Matrix metalloproteinase‐type 2 (MMP‐2) degrades extracellular matrix, mediates cell migration and tissue remodeling, and is implicated in mediating neural crest (NC) and cardiac development. However, there is little information regarding the expression and distribution of MMP‐2 during cardiogenesis and NC morphogenesis. To elucidate the role of MMP‐2, we performed a comprehensive study on the temporal and spatial distribution of MMP‐2 mRNA and protein during critical stages of early avian NC and cardiac development. We found that ectodermally derived NC cells did not express MMP‐2 mRNA during their initial formation and early emigration but encountered MMP‐2 protein in basement membranes deposited by mesodermal cells. While NC cells did not synthesize MMP‐2 mRNA early in migration, MMP‐2 expression was seen in NC cells within the cranial paraxial and pharyngeal arch mesenchyme at later stages but was never detected in NC‐derived neural structures. This suggested NC MMP‐2 expression was temporally and spatially dependent on tissue interactions or differed within the various NC subpopulations. MMP‐2 was first expressed within cardiogenic splanchnic mesoderm before and during the formation of the early heart tube, at sites of active pharyngeal arch and cardiac remodeling, and during cardiac cushion cell migration. Collectively, these results support the postulate that MMP‐2 has an important functional role in early cardiogenesis, NC cell and cardiac cushion migration, and remodeling of the pharyngeal arches and cardiac heart tube. Anat Rec 259:168–179, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

15.
The development of the neural crest in the human   总被引:6,自引:1,他引:5  
The first systematic account of the neural crest in the human has been prepared after an investigation of 185 serially sectioned staged embryos, aided by graphic reconstructions. As many as fourteen named topographical subdivisions of the crest were identified and eight of them give origin to ganglia (Table 2). Significant findings in the human include the following. (1) An indication of mesencephalic neural crest is discernible already at stage 9, and trigeminal, facial, and postotic components can be detected at stage 10. (2) Crest was not observed at the level of diencephalon 2. Although pre-otic crest from the neural folds is at first continuous (stage 10), crest-free zones are soon observable (stage 11) in Rh.1, 3, and 5. (3) Emigration of cranial neural crest from the neural folds at the neurosomatic junction begins before closure of the rostral neuropore, and later crest cells do not accumulate above the neural tube. (4) The trigeminal, facial, glossopharyngeal and vagal ganglia, which develop from crest that emigrates before the neural folds have fused, continue to receive contributions from the roof plate of the neural tube after fusion of the folds. (5) The nasal crest and the terminalis-vomeronasal complex are the last components of the cranial crest to appear (at stage 13) and they persist longer. (6) The optic, mesencephalic, isthmic, accessory, and hypoglossal crest do not form ganglia. Cervical ganglion 1 is separated early from the neural crest and is not a Froriep ganglion. (7) The cranial ganglia derived from neural crest show a specific relationship to individual neuromeres, and rhombomeres are better landmarks than the otic primordium, which descends during stages 9-14. (8) Epipharyngeal placodes of the pharyngeal arches contribute to cranial ganglia, although that of arch 1 is not typical. (9) The neural crest from rhombomeres 6 and 7 that migrates to pharyngeal arch 3 and from there rostrad to the truncus arteriosus at stage 12 is identified here, for the first time in the human, as the cardiac crest. (10) The hypoglossal crest provides cells that accompany those of myotomes 1-4 and form the hypoglossal cell cord at stages 13 and 14. (11) The occipital crest, which is related to somites 1-4 in the human, differs from the spinal mainly in that it does not develop ganglia. (12) The occipital and spinal portions of the crest migrate dorsoventrad and appear to traverse the sclerotomes before the differentiation into loose and dense zones in the latter. (13) Embryonic examples of synophthalmia and anencephaly are cited to emphasize the role of the neural crest in the development of cranial ganglia and the skull.  相似文献   

16.
The skeletal structures of the face and throat are derived from cranial neural crest cells (NCCs) that migrate from the embryonic neural tube into a series of branchial arches (BAs). The first arch (BA1) gives rise to the upper and lower jaw cartilages, whereas hyoid structures are generated from the second arch (BA2). The Hox paralogue group 2 (PG2) genes, Hoxa2 and Hoxb2, show distinct roles for hyoid patterning in tetrapods and fishes. In the mouse, Hoxa2 acts as a selector of hyoid identity, while its paralogue Hoxb2 is not required. On the contrary, in zebrafish Hoxa2 and Hoxb2 are functionally redundant for hyoid arch patterning. Here, we show that in Xenopus embryos morpholino-induced functional knockdown of Hoxa2 is sufficient to induce homeotic changes of the second arch cartilage. Moreover, Hoxb2 is downregulated in the BA2 of Xenopus embryos, even though initially expressed in second arch NCCs, similar to mouse and unlike in zebrafish. Finally, Xbap, a gene involved in jaw joint formation, is selectively upregulated in the BA2 of Hoxa2 knocked-down frog embryos, supporting a hyoid to mandibular change of NCC identity. Thus, in Xenopus Hoxa2 does not act redundantly with Hoxb2 for BA2 patterning, similar to mouse and unlike in fish. These data bring novel insights into the regulation of Hox PG2 genes and hyoid patterning in vertebrate evolution and suggest that Hoxa2 function is required at late stages of BA2 development.  相似文献   

17.
Background: Morphogenesis of vertebrate craniofacial skeletal elements is dependent on a key cell population, the cranial neural crest cells (NCC). Cranial NCC are formed dorsally in the cranial neural tube and migrate ventrally to form craniofacial skeletal elements as well as other tissues. Multiple extracellular signaling pathways regulate the migration, survival, proliferation, and differentiation of NCC. Results: In this study, we demonstrate that Shh expression in the oral ectoderm and pharyngeal endoderm is essential for mandibular development. We show that a loss of Shh in these domains results in increased mesenchymal cell death in pharyngeal arch 1 (PA1) after NCC migration. This increased cell death can be rescued in utero by pharmacological inhibition of p53. Furthermore, we show that epithelial SHH is necessary for the early differentiation of mandibular cartilage condensations and, therefore, the subsequent development of Meckel's cartilage, around which the dentary bone forms. Nonetheless, a rescue of the cell death phenotype does not rescue the defect in cartilage condensation formation. Conclusions: Our results show that SHH produced by the PA1 epithelium is necessary for the survival of post‐migratory NCC, and suggests a key role in the subsequent differentiation of chondrocytes to form Meckel's cartilage. Developmental Dynamics 244:564–576, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
The role of cranial neural crest cells in the formation of visceral arch musculature was investigated in the Mexican axolotl, Ambystoma mexicanum. DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine, perchlorate) labeling and green fluorescent protein (GFP) mRNA injections combined with unilateral transplantations of neural folds showed that neural crest cells contribute to the connective tissues but not the myofibers of developing visceral arch muscles in the mandibular, hyoid, and branchial arches. Extirpations of individual cranial neural crest streams demonstrated that neural crest cells are necessary for correct morphogenesis of visceral arch muscles. These do, however, initially develop in their proper positions also in the absence of cranial neural crest. Visceral arch muscles forming in the absence of neural crest cells start to differentiate at their origins but fail to extend toward their insertions and may have a frayed appearance. Our data indicate that visceral arch muscle positioning is controlled by factors that do not have a neural crest origin. We suggest that the cranial neural crest-derived connective tissues provide directional guidance important for the proper extension of the cranial muscles and the subsequent attachment to the insertion on the correct cartilage. In a comparative context, our data from the Mexican axolotl support the view that the cranial neural crest plays a fundamental role in the development of not only the skeleton of the vertebrate head but also in the morphogenesis of the cranial muscles and that this might be a primitive feature of cranial development in vertebrates.  相似文献   

19.
Fgfr1 regulates patterning of the pharyngeal region   总被引:3,自引:0,他引:3  
Development of the pharyngeal region depends on the interaction and integration of different cell populations, including surface ectoderm, foregut endoderm, paraxial mesoderm, and neural crest. Mice homozygous for a hypomorphic allele of Fgfr1 have craniofacial defects, some of which appeared to result from a failure in the early development of the second branchial arch. A stream of neural crest cells was found to originate from the rhombomere 4 region and migrate toward the second branchial arch in the mutants. Neural crest cells mostly failed to enter the second arch, however, but accumulated in a region proximal to it. Both rescue of the hypomorphic Fgfr1 allele and inactivation of a conditional Fgfr1 allele specifically in neural crest cells indicated that Fgfr1 regulates the entry of neural crest cells into the second branchial arch non-cell-autonomously. Gene expression in the pharyngeal ectoderm overlying the developing second branchial arch was affected in the hypomorphic Fgfr1 mutants at a stage prior to neural crest entry. Our results indicate that Fgfr1 patterns the pharyngeal region to create a permissive environment for neural crest cell migration.  相似文献   

20.
Myosin‐X (MyoX) belongs to a large family of unconventional, nonmuscle, actin‐dependent motor proteins. We show that MyoX is predominantly expressed in cranial neural crest (CNC) cells in embryos of Xenopus laevis and is required for head and jaw cartilage development. Knockdown of MyoX expression using antisense morpholino oligonucleotides resulted in retarded migration of CNC cells into the pharyngeal arches, leading to subsequent hypoplasia of cartilage and inhibited outgrowth of the CNC‐derived trigeminal nerve. In vitro migration assays on fibronectin using explanted CNC cells showed significant inhibition of filopodia formation, cell attachment, spreading and migration, accompanied by disruption of the actin cytoskeleton. These data support the conclusion that MyoX has an essential function in CNC migration in the vertebrate embryo. Developmental Dynamics 238:2522–2529, 2009. © Published 2009 Wiley‐Liss, Inc.?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号