首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is generally believed that the jaw arose through the simple transformation of an ancestral rostral gill arch. The gnathostome jaw differentiates from Hox-free crest cells in the mandibular arch, and this is also apparent in the lamprey. The basic Hox code, including the Hox-free default state in the mandibular arch, may have been present in the common ancestor, and jaw patterning appears to have been secondarily constructed in the gnathostomes. The distribution of the cephalic neural crest cells is similar in the early pharyngula of gnathostomes and lampreys, but different cell subsets form the oral apparatus in each group through epithelial-mesenchymal interactions: and this heterotopy is likely to have been an important evolutionary change that permitted jaw differentiation. This theory implies that the premandibular crest cells differentiate into the upper lip, or the dorsal subdivision of the oral apparatus in the lamprey, whereas the equivalent cell population forms the trabecula of the skull base in gnathostomes. Because the gnathostome oral apparatus is derived exclusively from the mandibular arch, the concepts 'oral' and 'mandibular' must be dissociated. The 'lamprey trabecula' develops from mandibular mesoderm, and is not homologous with the gnathostome trabecula, which develops from premandibular crest cells. Thus the jaw evolved as an evolutionary novelty through tissue rearrangements and topographical changes in tissue interactions.  相似文献   

2.
Neural crest patterning and the evolution of the jaw   总被引:1,自引:0,他引:1  
Kimmel CB  Miller CT  Keynes RJ 《Journal of anatomy》2001,199(PT 1-2):105-120
Here we present ideas connecting the behaviour of the cranial neural crest during development with the venerable, perhaps incorrect, view that gill-supporting cartilages of an ancient agnathan evolved into the skeleton of an early gnathostome's jaw. We discuss the pattern of migration of the cranial neural crest ectomesenchyme in zebrafish, along with the subsequent arrangement of postmigratory crest and head mesoderm in the nascent pharyngeal segments (branchiomeres), in diverse gnathostomes and in lampreys. These characteristics provide for a plausible von Baerian explanation for the problematic inside-outside change in topology of the gills and their supports between these 2 major groups of vertebrates. We consider it likely that the jaw supports did indeed arise from branchiomeric cartilages.  相似文献   

3.
Neural crest patterning and the evolution of the jaw   总被引:4,自引:2,他引:2  
Here we present ideas connecting the behaviour of the cranial neural crest during development with the venerable, perhaps incorrect, view that gill-supporting cartilages of an ancient agnathan evolved into the skeleton of an early gnathostome's jaw. We discuss the pattern of migration of the cranial neural crest ectomesenchyme in zebrafish, along with the subsequent arrangement of postmigratory crest and head mesoderm in the nascent pharyngeal segments (branchiomeres), in diverse gnathostomes and in lampreys. These characteristics provide for a plausible von Baerian explanation for the problematic inside-outside change in topology of the gills and their supports between these 2 major groups of vertebrates. We consider it likely that the jaw supports did indeed arise from branchiomeric cartilages.  相似文献   

4.
5.
6.
Summary Neural crestectomies were performed on neurula stage medaka embryos to remove neural crest with tungsten needles from one of five anteriorly located zones. The embryos were allowed to develop to stage 35 (immediately posthatching) larvae, then cleared and stained for cartilage. An analysis of changes to the head skeletons indicated that most of the anterior neurocranium and the entire viscerocranium received neural crest contributions during development. The elements involved included; the lamina orbitonasalis of the nasal capsule, the trabeculae, Meckels' cartilage and the quadrate of the lower jaw, the pterygoid process, the orbital cartilages and the epiphyseals of the neurocranial roof, as well as all the elements of the hyoid and branchial arches. By further analysis of only those neural crest ablations which produced alterations to the head skeleton, the neural crest cells which contributed to the development of each element were mapped. They originated principally, from one of three regions; the mesencephalon (second most anterior zone removed, number II), the preotic rhombencephalon (zone III), or the postotic rhombencephalon (zone IV). Neural crest from the level of the prosencephalon (zone I) was not chondrogenic nor was neural crest from the fifth region (zone V) which extended beyond the 5th to about the 8th or 10th somite and marked the anterior end of trunk neural crest. The data are discussed and are found to be consistent with the results from other vertebrates and support the central role of the neural crest in the development and evolution of the vertebrate bead skeleton.  相似文献   

7.
The striking similarity between mesodermally derived fibroblasts and ectomesenchyme cells, which are thought to be derivatives of the neural crest, has long been a source of interest and controversy. In mice, the gene encoding the alpha subunit of the platelet-derived growth factor receptor (PDGFRalpha) is expressed both by mesodermally derived mesenchymal cells and by ectomesenchyme. Whole-mount immunostaining previously revealed that PDGFRalpha is present in the cephalic neural fold epithelium of early murine embryos (Takakura et al. [1997] J Histochem Cytochem 45:883-893). We now show that, within the neural fold, a sharp boundary exists between E-cadherin-expressing non-neural epithelium and the neural epithelium of the dorsal ridge. In addition, we found that cells coexpressing E-cadherin and PDGFRalpha are present in the non-neural epithelium of the neural folds. These observations raise the possibility that at least some PDGFRalpha(+) ectomesenchyme originates from the lateral non-neural domain of neural fold epithelium. This inference is consistent with previous reports (Nichols [ 1981] J Embryol Exp Morphol 64:105-120; Nichols [ 1986] Am J Anat 176:221-231) that mesenchymal cells emerge precociously from an epithelial neural fold domain resembling the primitive streak in the early embryonic epiblast. Therefore, we propose the name "metablast" for this non-neural epithelial domain to indicate that it is the site of a delayed local delamination of mesenchyme similar to involution of mesoderm during gastrulation. We further propose the testable hypothesis that neural crest and ectomesenchyme are developmentally distinct progenitor populations and that at least some ectomesenchyme is metablast-derived rather than neural crest-derived tissue. Developmental Dynamics 229:118-130, 2004.  相似文献   

8.
9.
10.
The cardiac neural crest is located in a transitional area on the neuraxis between trunk and cephalic regions and gives rise to both the dorsolateral and ventrolateral crest cell populations. Around stage 18 of chick development, a mass of E/C8+ cells surrounds the postotic pharyngeal arches and forms a crescent-shaped arch, termed the circumpharyngeal ridge. Using immunohistochemistry and quail-chick chimeras, it was determined that the E/C8+ cell mass located in the circumpharyngeal ridge derives from the dorsolateral component of the cardiac neural crest. The ventrolateral cell population of the cardiac crest is located more medially and shows long-persistent HNK-1 immunoreactivity dorsolateral to the foregut. The crest cells that populate the gut arise from the caudal portion of the circumpharyngeal crest and are always located caudal to the caudalmost pharyngeal ectomesenchyme. Circumpharyngeal crest cells continuously populate the pharyngeal arch ectomesenchyme and enteric nervous system on the lateral side of the foregut wall, as well as the hypoglossal pathway which develops within the ventral portion of the circumpharyngeal ridge. E/C8 and HNK-1 immunoreactivity are associated with the cells migrating via the dorsolateral (circumpharyngeal) and ventrolateral pathways, respectively, with one exception: there is a population of putative crest cells along the proximal course of the vagal intestinal branch that shows both immunoreactivities around stage 20. Dil labeling of the cells in the circumpharyngeal ridge suggests that the cells are contributed from the circumpharyngeal ridge to this population. Thus, the distribution of the circumpharyngeal crest cells and their derivatives coincides with the peripheral branch distribution of the cranial nerves IX, X, and XII, whose development is selectively affected in the absence of the cardiac neural crest, the source of the circumpharyngeal crest.© Willey-Liss, Inc.  相似文献   

11.
12.
The evolution of animal morphology can be understood as a series of changes in developmental programs. Among vertebrates, some developmental stages are conserved across species, representing particular developmental constraints. One of the most conserved stages is the vertebrate pharyngula, in which similar embryonic morphology is observed and the Hox code is clearly expressed. The oral developmental program also appears to be constrained to some extent, as both its morphology and the the Hox-code-default state of the oropharyngeal region are well conserved between the lamprey and gnathostome embryos. These features do not by themselves explain the evolution of jaws, but should be regarded as a prerequisite for evolutionary diversification of the mandibular arch. By comparing the pharyngula morphology of the lamprey and gnathostomes, it has become clear that the oral pattern is not entirely identical; in particular, the positional differentiation of the rostral ectomesenchyme is shifted between these animals. Therefore, the jaw seems to have arisen as an evolutionary novelty by overriding ancestral constraints, a process in which morphological homologies are partially lost. This change involves the heterotopic shift of tissue interaction, which appears to have been preceded by the transition from monorhiny to diplorhiny, as well as separation of the hypophysis. When gene expression patterns are compared between the lamprey and gnathostomes, cell-autonomously functioning genes tend to be associated with identical cell types or equivalent anatomical domains, whereas growth-factor-encoding genes have changed their expression domains during evolution. Thus, the heterotopic evolution may be based on changes in the regulation of signalling-molecule-encoding genes.  相似文献   

13.
14.
15.
The skeletal structures of the face and throat are derived from cranial neural crest cells (NCCs) that migrate from the embryonic neural tube into a series of branchial arches (BAs). The first arch (BA1) gives rise to the upper and lower jaw cartilages, whereas hyoid structures are generated from the second arch (BA2). The Hox paralogue group 2 (PG2) genes, Hoxa2 and Hoxb2, show distinct roles for hyoid patterning in tetrapods and fishes. In the mouse, Hoxa2 acts as a selector of hyoid identity, while its paralogue Hoxb2 is not required. On the contrary, in zebrafish Hoxa2 and Hoxb2 are functionally redundant for hyoid arch patterning. Here, we show that in Xenopus embryos morpholino-induced functional knockdown of Hoxa2 is sufficient to induce homeotic changes of the second arch cartilage. Moreover, Hoxb2 is downregulated in the BA2 of Xenopus embryos, even though initially expressed in second arch NCCs, similar to mouse and unlike in zebrafish. Finally, Xbap, a gene involved in jaw joint formation, is selectively upregulated in the BA2 of Hoxa2 knocked-down frog embryos, supporting a hyoid to mandibular change of NCC identity. Thus, in Xenopus Hoxa2 does not act redundantly with Hoxb2 for BA2 patterning, similar to mouse and unlike in fish. These data bring novel insights into the regulation of Hox PG2 genes and hyoid patterning in vertebrate evolution and suggest that Hoxa2 function is required at late stages of BA2 development.  相似文献   

16.
Background : The turtle plastron is composed of a keratinized epidermis overlying nine dermal bones. Its developmental origin has been controversial; recent evidence suggests that the plastral bones derive from trunk neural crest cells (NCCs). Results: This study extends the observations that there is a turtle‐specific, second wave of trunk NCC delamination and migration, after the original NCCs have reached their destination and differentiated. This second wave was confirmed by immunohistochemistry in whole‐mounts and serial sections, by injecting DiI (1,1′, di‐octadecyl‐3,3,3′,3′,‐tetramethylindo‐carbocyanine perchlorate) into the lumen of the neural tube and tracing labeled cells into the plastron, and by isolating neural tubes from older turtle embryos and observing delaminating NCCs. This later migration gives rise to a plastral ectomesenchyme that expresses NCC markers and can be induced to initiate bone formation. Conclusions: The NCCs of this second migration have properties similar to those of the earlier NCCs, but also express markers characteristic of cranial NCCs. The majority of the cells of the plastron mesenchyme express neural crest markers, and have osteogenic differentiation capabilities that are similar or identical to craniofacial ectomesenchyme. Our evidence supports the contention that turtle plastron bones are derived from a late emigrating population of cells derived from the trunk neural crest. Developmental Dynamics 242:1223–1235, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
Background: The stapes, an ossicle found within the middle ear, is involved in transmitting sound waves to the inner ear by means of the oval window. There are several developmental problems associated with this ossicle and the oval window, which cause hearing loss. The developmental origin of these tissues has not been fully elucidated. Results: Using transgenic reporter mice, we have shown that the stapes is of dual origin with the stapedial footplate being composed of cells of both neural crest and mesodermal origin. Wnt1cre/Dicer mice fail to develop neural crest‐derived cartilages, therefore, have no middle ear ossicles. We have shown in these mice the mesodermal stapedial footplate fails to form and the oval window is induced but underdeveloped. Conclusions: If the neural crest part of the stapes fails to form the mesodermal part does not develop, indicating that the two parts are interdependent. The stapes develops tightly associated with the otic capsule, however, it is not essential for the positioning of the oval window, suggesting that other tissues, perhaps within the inner ear are needed for oval window placement. Developmental Dynamics 241:1396–1404, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
The cardiac neural crest is located in a transitional area on the neuraxis between trunk and cephalic regions and gives rise to both the dorsolateral and ventrolateral crest cell populations. Around stage 18 of chick development, a mass of E/C8+ cells surrounds the postotic pharyngeal arches and forms a crescent-shaped arch, termed the circumpharyngeal ridge. Using immunohistochemistry and quail-chick chimeras, it was determined that the E/C8+ cell mass located in the circumpharyngeal ridge derives from the dorsolateral component of the cardiac neural crest. The ventrolateral cell population of the cardiac crest is located more medially and shows long-persistent HNK-1 immunoreactivity dorsolateral to the foregut. The crest cells that populate the gut arise from the caudal portion of the circumpharyngeal crest and are always located caudal to the caudal-most pharyngeal ectomesenchyme. Circumpharyngeal crest cells continuously populate the pharyngeal arch ectomesenchyme and enteric nervous system on the lateral side of the foregut wall, as well as the hypoglossal pathway which develops within the ventral portion of the circumpharyngeal ridge. E/C8 and HNK-1 immunoreactivity are associated with the cells migrating via the dorsolateral (circumpharyngeal) and ventrolateral pathways, respectively, with one exception: there is a population of putative crest cells along the proximal course of the vagal intestinal branch that shows both immunoreactivities around stage 20. DiI labeling of the cells in the circumpharyngeal ridge suggests that the cells are contributed from the circumpharyngeal ridge to this population. Thus, the distribution of the circumpharyngeal crest cells and their derivatives coincides with the peripheral branch distribution of the cranial nerves IX, X, and XII, whose development is selectively affected in the absence of the cardiac neural crest, the source of the circumpharyngeal crest.  相似文献   

19.
20.
The distribution and migration of the cardiac neural crest was studied in chick embryos from stages 11 to 17 that were immunochemically stained in whole-mount and sectioned specimens with a monoclonal antibody, HNK-1. The following results were obtained: (1) The first phase of the migration in the cardiac crest follows the dorsolateral pathway beneath the ectoderm. (2) In the first site of arrest, the cardiac crest forms a longitudinal mass of neural-crest cells, called in the present study, the circumpharyngeal crest; this mass is located dorsolateral to the dorsal edge of the pericardium (pericardial dorsal horn) where splanchic and somatic lateral mesoderm meet. (3) A distinctive strand of neural-crest cells, called the anterior tract, arises from the mid-otic level and ends in the circumpharyngeal crest. (4) By stage 16, after the degeneration of the first somite, another strand of neural-crest cells, called the posterior tract, appears dorsal to the circumpharyngeal crest. It forms an arch-like pathway along the anterior border of the second somite. (5) The seeding of the pharyngeal ectomesenchyme takes place before the formation of pharyngeal arches in the postotic area, i.e., the crest cells are seeded into the lateral body wall ventrally from the circumpharyngeal crest; and, by the ventralward regression of the pericardial dorsal horn, lateral expansion of pharyngeal pouch, and caudal regression of the pericardium, the crest cell population is pushed away by the pharyngeal pouch. Thus the pharyngeal arch ectomesenchyme is segregated. (6) By stage 14, at the occipital somite level, ventrolateral migration of the neural crest is observed within the anterior half of each somite. Some of these crest cells are continuos with the caudal portion of the circumpharyngeal crest. An early contribution to the enteric neuroblasts is apparent in this area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号