首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
BACKGROUND: Patients with schizophrenia have smaller hippocampal volumes and perform abnormally on most declarative memory tasks. Although these findings are likely related, the impact of hippocampal pathology on cognitive performance in schizophrenia remains unclear. This study examined this relationship by measuring the volume of the hippocampus and its activation during memory task performance. METHODS: Participants included 15 patients with schizophrenia and 16 age-matched control subjects. Hippocampal volume was determined via three-dimensional volumetric analysis of high-resolution magnetic resonance images. Hippocampal activity was assessed by measuring changes in blood oxygen level-dependent signal during a recognition memory task. RESULTS: Patients with schizophrenia had smaller hippocampal volumes bilaterally and demonstrated poorer performance on the recognition memory task, largely because of a heightened rate of false alarms to novel stimuli. Both groups showed robust hippocampal activity to old and new items when compared with a low-level baseline task; however, direct comparison of hippocampal activity during recognition task performance revealed that healthy control, but not the schizophrenia, subjects showed significant right anterior hippocampal activation during the evaluation of novel items. CONCLUSIONS: The impaired ability to classify new items as previously not experienced is associated with decreased recruitment and smaller volume of the hippocampus in schizophrenia.  相似文献   

2.
BACKGROUND: Patients with schizophrenia demonstrate poor verbal memory, ascribed to impaired prefrontal and hippocampal function. Healthy adults can increase recall accuracy following encoding interventions, such as item repetition and the formation of semantic associations. We examined the effects of these interventions on both memory performance and retrieval-related hippocampal activity in healthy adults and patients with schizophrenia. METHODS: Twelve patients with schizophrenia and twelve healthy control subjects participated. During study, subjects counted either the number of meanings or T-junctions in words seen only once or repeated four times. At test, O15-positron emission tomography scans were acquired while subjects completed word-stems with previously studied items. RESULTS: Control subjects recalled more words overall, but both groups demonstrated similar performance benefits following deeper encoding. Both item repetition and the use of a semantic encoding task were associated with memory retrieval-related hippocampal recruitment in control but not schizophrenic participants. Patients with schizophrenia demonstrated greater activation of prefrontal cortical areas during word retrieval. CONCLUSIONS: Despite a lack of hippocampal recruitment, patients with schizophrenia showed intact modulation of memory performance following both encoding interventions. Impaired hippocampal recruitment, in concert with greater prefrontal activation, may reflect a specific deficit in conscious recollection in schizophrenia.  相似文献   

3.
OBJECTIVE: Neuropsychological studies have demonstrated verbal episodic memory deficits in schizophrenia during word encoding and retrieval. This study examined neural substrates of memory in an analysis that controlled for successful retrieval. METHOD: Event-related blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) was used to measure brain activation during word encoding and recognition in 14 patients with schizophrenia and 15 healthy comparison subjects. An unbiased multiple linear regression procedure was used to model the BOLD response, and task effects were detected by contrasting the signal before and after stimulus onset. RESULTS: Patients attended during encoding and had unimpaired reaction times and normal response biases during recognition, but they had lower recognition discriminability scores, compared with the healthy subjects. Analysis of contrasts was restricted to correct items. Previous findings of a deficit in bilateral prefrontal cortex activation during encoding in patients were reproduced, but patients showed greater parahippocampal activation rather than deficits in temporal lobe activation. During recognition, left dorsolateral prefrontal cortex activation was lower in the patients and right anterior prefrontal cortex activation was preserved, as in the authors' previous study using positron emission tomography. Successful retrieval was associated with greater right dorsolateral prefrontal cortex activation in the comparison subjects, whereas orbitofrontal, superior frontal, mesial temporal, middle temporal, and inferior parietal regions were more active in the patients during successful retrieval. CONCLUSIONS: The pattern of prefrontal cortex underactivation and parahippocampal overactivation in the patients suggests that functional connectivity of dorsolateral prefrontal and temporal-limbic structures is disrupted by schizophrenia. This disruption may be reflected in the memory strategies of patients with schizophrenia, which include reliance on rote rehearsal rather than associative semantic processing.  相似文献   

4.
OBJECTIVE: Verbal memory deficits are among the most severe cognitive deficits observed in patients with schizophrenia. This study examined patterns of brain activity during episodic encoding and recognition of words in patients with schizophrenia. METHOD: Functional magnetic resonance imaging (fMRI) was used to study regional brain activation in 10 healthy male comparison subjects and 10 male outpatients with schizophrenia during performance of a modified version of the words subtest of Warrington's Recognition Memory Test. RESULTS: Despite having intact performance in word recognition, the patients with schizophrenia had less activation of the right dorsolateral and anterior prefrontal cortex, right anterior cingulate, and left lateral temporal cortex during word encoding, compared with the healthy comparison subjects. During word recognition, the patients had impairments in activation of the bilateral dorsolateral prefrontal and lateral temporal cortices. CONCLUSIONS: Schizophrenia was associated with attenuated frontotemporal activation during episodic encoding and recognition of words. These results from an fMRI study replicate earlier findings derived from a positron emission tomography study.  相似文献   

5.
OBJECTIVE: Memory impairment has been well documented in schizophrenia. In a previous study, the authors investigated patterns of brain activity during episodic encoding and recognition of words in remitted, stable schizophrenia outpatients being treated with novel antipsychotics. The same procedure was used in this study to investigate unmedicated patients during an acute episode of schizophrenia. METHOD: Functional magnetic resonance imaging was used to study regional brain activation in 10 unmedicated patients experiencing an acute episode of schizophrenia and 10 healthy comparison subjects during performance of a modified version of the words subtest of Warrington's Recognition Memory Test. RESULTS: Despite intact recognition performance, patients with schizophrenia showed reduced activation of anterior prefrontal, posterior cingulate, and retrosplenial areas relative to comparison subjects during word encoding. During word recognition, reduced activation was found in the patients' dorsolateral prefrontal and limbic/paralimbic regions. On the other hand, higher metabolism in bilateral anterior prefrontal cortices was observed. CONCLUSIONS: The results suggest that different neural pathways are engaged during episodic encoding and recognition of words in patients experiencing an acute episode of schizophrenia relative to healthy comparison subjects. Furthermore, acute psychosis may prevent practice effects, reflected in a failure to engage brain regions associated with successful episodic memory retrieval in healthy subjects.  相似文献   

6.
OBJECTIVE: Recognition memory is impaired in patients with schizophrenia, as they rely largely on item familiarity, rather than conscious recollection, to make mnemonic decisions. False recognition of novel items (foils) is increased in schizophrenia and may relate to this deficit in conscious recollection. By studying pictures of the target word during encoding, healthy adults can suppress false recognition. This study examined the effect of pictorial encoding on subsequent recognition of repeated foils in patients with schizophrenia. METHOD: The study included 40 patients with schizophrenia and 32 healthy comparison subjects. After incidental encoding of 60 words or pictures, subjects were tested for recognition of target items intermixed with 60 new foils. These new foils were subsequently repeated following either a two- or 24-word delay. Subjects were instructed to label these repeated foils as new and not to mistake them for old target words. RESULTS: Schizophrenic patients showed greater overall false recognition of repeated foils. The rate of false recognition of repeated foils was lower after picture encoding than after word encoding. Despite higher levels of false recognition of repeated new items, patients and comparison subjects demonstrated a similar degree of false recognition suppression after picture, as compared to word, encoding. CONCLUSIONS: Patients with schizophrenia displayed greater false recognition of repeated foils than comparison subjects, suggesting both a decrement of item- (or source-) specific recollection and a consequent reliance on familiarity in schizophrenia. Despite these deficits, presenting pictorial information at encoding allowed schizophrenic subjects to suppress false recognition to a similar degree as the comparison group, implying the intact use of a high-level cognitive strategy in this population.  相似文献   

7.
OBJECTIVE: Prior studies showed that subjects with major depression have deficits in hippocampal-based verbal declarative memory (e.g., recall of a paragraph) and in hippocampal and prefrontal cortical functioning and structure. The purpose of the present study was to assess hippocampal and prefrontal functioning during performance of a verbal declarative memory task in subjects with midlife major depression. METHOD: Subjects with midlife major depression (N=18) and healthy subjects (N=9) underwent positron emission tomography imaging during a control task and verbal encoding of a paragraph. RESULTS: During the verbal memory encoding task the comparison subjects, but not the subjects with depression, activated the right hippocampus and prefrontal cortex (anterior cingulate), as well as the cuneus and cerebellum. CONCLUSIONS: These results are consistent with a failure of hippocampal and anterior cingulate activation in depression, and they support the hypothesis of deficits in hippocampal and anterior cingulate functioning in depression.  相似文献   

8.
Psychotic major depression (PMD) is associated with deficits in verbal memory as well as other cognitive impairments. This study investigated brain function in individuals with PMD during a verbal declarative memory task. Participants included 16 subjects with PMD, 15 subjects with non-psychotic major depression (NPMD) and 16 healthy controls (HC). Functional magnetic resonance imaging (fMRI) data were acquired while subjects performed verbal memory encoding and retrieval tasks. During the explicit encoding task, subjects semantically categorized words as either “man-made” or “not man-made.” For the retrieval task, subjects identified whether words had been presented during the encoding task. Functional MRI data were processed using SPM5 and a group by condition ANOVA. Clusters of activation showing either a significant main effect of group or an interaction of group by condition were further examined using t-tests to identify group differences. During the encoding task, the PMD group showed lower hippocampus, insula, and prefrontal activation compared to HC. During the retrieval task, the PMD group showed lower recognition accuracy and higher prefrontal and parietal cortex activation compared to both HC and NPMD groups. Verbal retrieval deficits in PMD may be associated with deficient hippocampus function during encoding. Increased brain activation during retrieval may reflect an attempt to compensate for encoding deficits.  相似文献   

9.
OBJECTIVE: Neuropsychological studies have shown that deficits in verbal episodic memory in schizophrenia occur primarily during encoding and retrieval stages of information processing. The current study used positron emission tomography to examine the effect of schizophrenia on change in cerebral blood flow (CBF) during these memory stages. METHOD: CBF was measured in 23 healthy comparison subjects and 23 patients with schizophrenia during four conditions: resting baseline, motor baseline, word encoding, and word recognition. The motor baseline was used as a reference that was subtracted from encoding and recognition conditions by using statistical parametric mapping. RESULTS: Patients' performance was similar to that of healthy comparison subjects. During word encoding, patients showed reduced activation of left prefrontal and superior temporal regions. Reduced left prefrontal activation in patients was also seen during word recognition, and additional differences were found in the left anterior cingulate, left mesial temporal lobe, and right thalamus. Although patients' performance was similar to that of healthy comparison subjects, left inferior prefrontal activation was associated with better performance only in the comparison subjects. CONCLUSIONS: Left frontotemporal activation during episodic encoding and retrieval, which is associated with better recognition in healthy people, is disrupted in schizophrenia despite relatively intact recognition performance and right prefrontal function. This may reflect impaired strategic use of semantic information to organize encoding and facilitate retrieval.  相似文献   

10.
Despite robust evidence of hippocampal abnormalities in schizophrenia, it is unclear whether hippocampal dysfunction predates the onset of psychosis. We used functional magnetic resonance imaging to investigate hippocampal function in subjects with an at-risk mental state (ARMS). Eighteen subjects meeting criteria for an ARMS and 22 healthy controls, matched for age, gender, and premorbid IQ, were scanned while performing a version of the Deese-Roediger-McDermott false memory task. During an encoding phase, subjects read lists of words aloud. Following a delay, they were presented with 24 target words, 24 semantically related lure words, and 24 novel words and required to indicate if each had been presented before. Behaviorally, the ARMS group made more false alarm responses for novel words than controls (P = .04) and had a lower discrimination accuracy for target words (P = .02). During encoding, ARMS subjects showed less activation than healthy controls in the left middle frontal gyrus, the bilateral medial frontal gyri, and the left parahippocampal gyrus. Correct recognition relative to false alarms was associated with differential engagement of the hippocampus bilaterally in healthy controls, but this difference was absent in the ARMS group. The ARMS was associated with altered function in the medial temporal cortex, as well as in the prefrontal regions, during both verbal encoding and recognition. These neurofunctional differences were associated with diminished recognition performance and may reflect the greatly increased risk of psychosis associated with the ARMS.  相似文献   

11.
OBJECTIVES: Studies on the relation between local cerebral activation and retrieval success usually compared high and low performance conditions, and thus showed performance-related activation of different brain areas. Only a few studies directly compared signal intensities of different response categories during retrieval. During verbal recognition, we recently observed increased parieto-occipital activation related to false alarms. The present study intends to replicate and extend this observation by investigating common and differential activation by veridical and false recognition. METHODS: Fifteen healthy volunteers performed a verbal recognition paradigm using 160 learned target and 160 new distractor words. The subjects had to indicate whether they had learned the word before or not. Echo-planar MRI of blood-oxygen-level-dependent signal changes was performed during this recognition task. Words were classified post hoc according to the subjects' responses, i.e. hits, false alarms, correct rejections and misses. Response-related fMRI-analysis was used to compare activation associated with the subjects' recognition success, i.e. signal intensities related to the presentation of words were compared by the above-mentioned four response types. RESULTS: During recognition, all word categories showed increased bilateral activation of the inferior frontal gyrus, the inferior temporal gyrus, the occipital lobe and the brainstem in comparison with the control condition. Hits and false alarms activated several areas including the left medial and lateral parieto-occipital cortex in comparison with subjectively unknown items, i.e. correct rejections and misses. Hits showed more pronounced activation in the medial, false alarms in the lateral parts of the left parieto-occipital cortex. CONCLUSIONS: Veridical and false recognition show common as well as different areas of cerebral activation in the left parieto-occipital lobe: increased activation of the medial parietal cortex by hits may correspond to true recognition, increased activation of the parieto-occipital cortex by false alarms may correspond to familiarity decisions. Further studies are needed to investigate the reasons for false decisions in healthy subjects and patients with memory problems.  相似文献   

12.
This study sought to characterize the performance of patients with schizophrenia, as compared with healthy participants, on a memory task that required encoding of items to different depths. Participants included 21 individuals with schizophrenia and 26 healthy controls. During the encoding phase of the study, participants processed successively presented words in two ways: perceptually (by making a decision as to whether the letter "a" was present in the word) or semantically (by making a living/nonliving decision for each word). During the recognition phase of the study, participants were presented with a list of words containing items that had been presented during the encoding phase (during either the letter decision task or the semantic decision task), as well as items that had not been seen before (foils). Though patients with schizophrenia performed more poorly overall on the recognition task, recognition was facilitated by semantic encoding to an equivalent degree in both groups. In other words, while significant main effects were present for group and encoding, no groupxencoding condition was present. This result is consistent with previous findings of a lack of qualitative differences in performance on learning and memory tasks between patients with schizophrenia and healthy controls. It also suggests that strategies that place constraints on the encoding processes used by patients may help improve the efficiency with which they learn and remember information.  相似文献   

13.
Bipolar disorder is associated with persistent declarative memory disturbances, but the neural basis of these deficits is not well understood. We used fMRI to investigate brain activity during performance on a face‐name paired associate task, which allows for the dissociation of encoding and recall‐related memory processes. Fifteen clinically remitted bipolar I disorder patients and 24 demographically matched healthy comparison subjects were scanned during task performance. At the voxel level, bipolar patients showed reduced cortical activation, relative to controls, in multiple task‐related brain regions during encoding. During recognition, bipolar patients under‐activated left hippocampal and parahippocampal regions, despite adequate task performance. Region of interest analyses indicated that, during encoding, bipolar patients had greater bilateral dorsolateral prefrontal (DLPFC) activity than healthy subjects. In contrast, during recognition patients showed hypo‐activation relative to controls in the right, but not the left, DLPFC. Although hippocampal activity did not differ between groups during encoding, bipolar patients failed to activate hippocampal regions to the same extent as healthy subjects during recognition. Finally, while better task performance was associated with recognition‐related hippocampal activity in healthy subjects, bipolar patients showed an inverse relationship between task performance and hippocampal activity. Remitted bipolar patients over‐engaged dorsolateral prefrontal regions when learning face‐name pairs, but relative hypoactivation in both prefrontal and medial temporal regions during recognition. These findings suggest a neural basis for the long‐term memory deficits consistently observed in patients with bipolar disorder; further, as these patterns appear in symptomatically remitted patients, they are unlikely to be an artifact of mood symptoms. Hum Brain Mapp, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
BACKGROUND: Patients with schizophrenia have difficulty using contextual information to recall the source of information. Given the importance of the hippocampus and prefrontal cortex (PFC) in this type of memory, we hypothesized that this cognitive deficit stemmed from aberrant fronto-hippocampal activation during memory retrieval. METHODS: Patients with schizophrenia (n = 16) and age-matched comparison subjects (n = 16) underwent functional magnetic resonance imaging while performing a verbal memory task that requires intact use of temporal context. Blood oxygen-level dependent (BOLD) signal during correct memory decisions was compared between the two groups with statistical parametric mapping. RESULTS: Contrary to our hypotheses, patients with schizophrenia demonstrated nearly identical memory performance to that of the comparison subjects. Despite this, there were significant between-group BOLD signal differences, including a pattern of task-dependent hypofrontality or hyperfrontality. In addition, whereas the highest-performing subset of the comparison group demonstrated robust modulation of hippocampal activity, this pattern was not seen in the highest-performing patients with schizophrenia. CONCLUSIONS: Despite memory performance similar to that of comparison subjects, patients with schizophrenia activated different neural pathways to achieve this success. This might reflect underlying neuropathology in fronto-hippocampal circuitry, the use of an alternate cognitive strategy to accomplish task performance, or both.  相似文献   

15.
BACKGROUND: Recent work suggests that episodic memory deficits in schizophrenia may be related to disturbances of encoding or retrieval. Schizophrenia patients appear to benefit from instruction in episodic memory strategies. We tested the hypothesis that providing effective encoding strategies to schizophrenia patients enhances encoding-related brain activity and recognition performance. METHODS: Seventeen schizophrenia patients and 26 healthy comparison subjects underwent functional magnetic resonance imaging scans while performing incidental encoding tasks of words and faces. Subjects were required to make either deep (abstract/concrete) or shallow (alphabetization) judgments for words and deep (gender) judgments for faces, followed by subsequent recognition tests. RESULTS: Schizophrenia and comparison subjects recognized significantly more words encoded deeply than shallowly, activated regions in inferior frontal cortex (Brodmann area 45/47) typically associated with deep and successful encoding of words, and showed greater left frontal activation for the processing of words compared with faces. However, during deep encoding and material-specific processing (words vs. faces), participants with schizophrenia activated regions not activated by control subjects, including several in prefrontal cortex. CONCLUSIONS: Our findings suggest that a deficit in use of effective strategies influences episodic memory performance in schizophrenia and that abnormalities in functional brain activation persist even when such strategies are applied.  相似文献   

16.
Verbal and visual recognition tasks were administered to 40 patients with schizophrenia and 40 healthy comparison subjects. The verbal recognition task consisted of discriminating between 16 target words and 16 new words. The visual recognition task consisted of discriminating between 16 target pictures (8 black-and-white and 8 color) and 16 new pictures (8 black-and-white and 8 color). Visual recognition was followed by a spatial context discrimination task in which subjects were required to remember the spatial location of the target pictures at encoding. Results showed that recognition deficit in patients was similar for verbal and visual material. In both schizophrenic and healthy groups, men, but not women, obtained better recognition scores for the colored than for the black-and-white pictures. However, men and women similarly benefited from color to reduce spatial context discrimination errors. Patients showed a significant deficit in remembering the spatial location of the pictures, independently of accuracy in remembering the pictures themselves. These data suggest that patients are impaired in the amount of visual information that they can encode. With regards to the perceptual attributes of the stimuli, memory for spatial information appears to be affected, but not processing of color information.  相似文献   

17.
Temporal lobe epilepsy can induce functional plasticity in temporoparietal networks involved in language and long-term memory processing. Previous studies in healthy subjects have revealed the relative difficulty for this network to respond effectively across different experimental designs, as compared to more reactive regions such as frontal lobes. For a protocol to be optimal for clinical use, it has to first show robust effects in a healthy cohort. In this study, we developed a novel experimental paradigm entitled NEREC, which is able to reveal the robust participation of temporoparietal networks in a uniquely combined language and memory task, validated in an fMRI study with healthy subjects. Concretely, NEREC is composed of two runs: (a) an intermixed language-memory task (confrontation naming associated with encoding in nonverbal items, NE) to map language (i.e., word retrieval and lexico-semantic processes) combined with simultaneous long-term verbal memory encoding (NE items named but also explicitly memorized) and (b) a memory retrieval task of items encoded during NE (word recognition, REC) intermixed with new items. Word recognition is based on both perceptual-semantic familiarity (feeling of ‘know’) and accessing stored memory representations (remembering). In order to maximize the remembering and recruitment of medial temporal lobe structures, we increased REC difficulty by changing the modality of stimulus presentation (from nonverbal during NE to verbal during REC). We report that (a) temporoparietal activation during NE was attributable to both lexico-semantic (language) and memory (episodic encoding and semantic retrieval) processes; that (b) encoding activated the left hippocampus, bilateral fusiform, and bilateral inferior temporal gyri; and that (c) task recognition (recollection) activated the right hippocampus and bilateral but predominant left fusiform gyrus. The novelty of this protocol consists of (a) combining two tasks in one (language and long-term memory encoding/recall) instead of applying isolated tasks to map temporoparietal regions, (b) analyzing NE data based on performances recorded during REC, (c) double-mapping networks involved in naming and in long-term memory encoding and retrieval, (d) focusing on remembering with hippocampal activation and familiarity judgment with lateral temporal cortices activation, and (e) short duration of examination and feasibility. These aspects are of particular interest in patients with TLE, who frequently show impairment of these cognitive functions. Here, we show that the novel protocol is suited for this clinical evaluation.  相似文献   

18.
OBJECTIVE: Patients with schizophrenia improve episodic memory accuracy when given organizational strategies through levels-of-processing paradigms. This study tested if improvement is accompanied by normalized frontotemporal function. METHOD: Event-related blood-oxygen-level-dependent functional magnetic resonance imaging (fMRI) was used to measure activation during shallow (perceptual) and deep (semantic) word encoding and recognition in 14 patients with schizophrenia and 14 healthy comparison subjects. RESULTS: Despite slower and less accurate overall word classification, the patients showed normal levels-of-processing effects, with faster and more accurate recognition of deeply processed words. These effects were accompanied by left ventrolateral prefrontal activation during encoding in both groups, although the thalamus, hippocampus, and lingual gyrus were overactivated in the patients. During word recognition, the patients showed overactivation in the left frontal pole and had a less robust right prefrontal response. CONCLUSIONS: Evidence of normal levels-of-processing effects and left prefrontal activation suggests that patients with schizophrenia can form and maintain semantic representations when they are provided with organizational cues and can improve their word encoding and retrieval. Areas of overactivation suggest residual inefficiencies. Nevertheless, the effect of teaching organizational strategies on episodic memory and brain function is a worthwhile topic for future interventional studies.  相似文献   

19.
Individuals with schizophrenia demonstrate behavioral and neurobiological deficits in episodic memory. However, recent work suggests that episodic memory deficits in schizophrenia may be mitigated through specific encoding strategies. The current study directly compared brain activity and memory performance associated with two different verbal encoding orientations in the same group of schizophrenia participants, in order to more fully characterize the role of strategy in memory processing in this population. Participants included 18 individuals with schizophrenia and 15 healthy comparison participants. Participants encoded words under two conditions during separate fMRI scanning runs. During Incidental encoding, participants were required to make abstract/concrete judgments for each word. During Intentional encoding, participants were instructed to memorize each word for a later memory test. Free recall and a recognition task (utilizing the Remember/Know paradigm) were performed outside of the scanner. Consistent with prior work, schizophrenia participants recognized more words encoded Incidentally than Intentionally, although free recall remained substantially impaired. Schizophrenia participants were also less likely to give Remember judgments for old words and more likely to give Guess judgments for both old and new words. When functional magnetic resonance imaging data were examined, we found that Incidental encoding was associated with substantially fewer between-group differences (Control>Schizophrenia) than Intentional encoding. Furthermore, schizophrenia participants exhibited intact activity during encoding of items that were subsequently retrieved. Our results suggest that use of an Incidental encoding strategy improved recognition memory among individuals with schizophrenia and resulted in a pattern of encoding-related brain activity that was more similar to that seen in control participants. However, we found that Incidental encoding did not improve free recall in schizophrenia participants and abnormal brain activity in some regions was observed, despite improvements in recognition memory.  相似文献   

20.
Schizophrenia is a major mental disorder which is characterized by several cognitive deficits. Investigations of the neural basis of memory dysfunctions using neuroimaging techniques suggest that the hippocampus plays an important role in declarative memory impairment. The goal of this study was to investigate possible dysfunctions in cerebral activation in schizophrenic patients during both word and face recognition memory tasks. We tested 22 schizophrenics and 24 controls matched by gender, age, handedness and parental socioeconomic status. Compared to healthy volunteers, patients with schizophrenia showed decreased bilateral hippocampal activation during word and face recognition tasks. The whole brain analysis also showed a pattern of cortical and subcortical hypoactivation for both verbal and non-verbal recognition. This study provides further evidence of hippocampal involvement in declarative memory impairments of schizophrenia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号