首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Circulating tumor cells (CTCs) in the blood of cancer patients are of high clinical relevance. Since detection and isolation of CTCs often rely on cell dimensions, knowledge of their size is key. We analyzed the median CTC size in a large cohort of breast (BC), prostate (PC), colorectal (CRC), and bladder (BLC) cancer patients. Images of patient‐derived CTCs acquired on cartridges of the FDA‐cleared CellSearch® method were retrospectively collected and automatically re‐analyzed using the accept software package. The median CTC diameter (μm) was computed per tumor type. The size differences between the different tumor types and references (tumor cell lines and leukocytes) were nonparametrically tested. A total of 1962 CellSearch® cartridges containing 71 612 CTCs were included. In BC, the median computed diameter (CD) of patient‐derived CTCs was 12.4 μm vs 18.4 μm for cultured cell line cells. For PC, CDs were 10.3 μm for CTCs vs 20.7 μm for cultured cell line cells. CDs for CTCs of CRC and BLC were 7.5 μm and 8.6 μm, respectively. Finally, leukocytes were 9.4 μm. CTC size differed statistically significantly between the four tumor types and between CTCs and the reference data. CTC size differences between tumor types are striking and CTCs are smaller than cell line tumor cells, whose size is often used as reference when developing CTC analysis methods. Based on our data, we suggest that the size of CTCs matters and should be kept in mind when designing and optimizing size‐based isolation methods.

Abbreviations

ACCEPT
Automated CTC Classification, Enumeration, and PhenoTyping software
BC
breast cancer
BLC
bladder cancer
CD
computed diameter
CEL
cultured tumor cell (cell line)
CK
cytokeratin
CRC
colorectal cancer
CTC‐L
circulating tumor cells derived from cerebrospinal fluid (liquor)
CTCs
circulating tumor cells
DAPI
4′6‐diamidino‐2‐phenylindole
EMT
epithelial–mesenchymal transition
EpCAM
epithelial cell adhesion molecule
IQR
interquartile range
KW test
Kruskal–Wallis test
MWU test
Mann–Whitney U test
NCR
nucleus/cytoplasm ratio
P2A
perimeter to area
PC
prostate cancer
TIF
tagged Image Format files
TXT
text file
μm
micrometer
µm2
square micrometers
  相似文献   

2.
3.
Several platforms for noninvasive EGFR testing are currently used in the clinical setting with sensitivities ranging from 30% to 100%. Prospective studies evaluating agreement and sources for discordant results remain lacking. Herein, seven methodologies including two next‐generation sequencing (NGS)‐based methods, three high‐sensitivity PCR‐based platforms, and two FDA‐approved methods were compared using 72 plasma samples, from EGFR‐mutant non‐small‐cell lung cancer (NSCLC) patients progressing on a first‐line tyrosine kinase inhibitor (TKI). NGS platforms as well as high‐sensitivity PCR‐based methodologies showed excellent agreement for EGFR‐sensitizing mutations (K = 0.80–0.89) and substantial agreement for T790M testing (K = 0.77 and 0.68, respectively). Mutant allele frequencies (MAFs) obtained by different quantitative methods showed an excellent reproducibility (intraclass correlation coefficients 0.86–0.98). Among other technical factors, discordant calls mostly occurred at mutant allele frequencies (MAFs) ≤ 0.5%. Agreement significantly improved when discarding samples with MAF ≤ 0.5%. EGFR mutations were detected at significantly lower MAFs in patients with brain metastases, suggesting that these patients risk for a false‐positive result. Our results support the use of liquid biopsies for noninvasive EGFR testing and highlight the need to systematically report MAFs.

Abbreviations

BEAMing
beads, emulsion, amplification, and magnetics
cfDNA
circulating free DNA, cell‐free DNA
cobas
cobas® EGFR Mutation Test v2 (Roche Diagnostics)
ctDNA
circulating tumor DNA
CUSUM
cumulative sum
ddPCR
droplet digital polymerase chain reaction
dPCR
digital polymerase chain reaction
EGFR
epidermal growth factor receptor
FFPE
formalin‐fixed, paraffin‐embedded
ICC
intraclass correlation coefficient
MAF
mutant allele frequency
NGS platforms
Ion S5™ XL and GeneRead™
NGS
next‐generation sequencing
NSCLC
non‐small‐cell lung cancer
PNA‐Q‐PCR
peptic nucleic acid probe‐based real‐time polymerase chain reaction
Therascreen
Therascreen EGFR Plasma RGQ PCR Kit (QIAgen)
TKI
tyrosine kinase inhibitor
  相似文献   

4.
Circular RNAs (circRNAs) have been shown to modulate gene expression and participate in the development of multiple malignancies. The purpose of this study was to investigate the role of circ_0008039 in breast cancer (BC). The expression of circ_0008039, miR‐140‐3p, and spindle and kinetochore‐associated protein 2 (SKA2) was detected by qRT‐PCR. Cell viability, colony formation, migration, and invasion were evaluated using methylthiazolyldiphenyl‐tetrazolium bromide (MTT) assay, colony formation assay, and transwell assay, respectively. Glucose consumption and lactate production were measured using commercial kits. Protein levels of hexokinase II (HK2) and SKA2 were determined by western blot. The interaction between miR‐140‐3p and circ_0008039 or SKA2 was verified by dual‐luciferase reporter assay. Finally, a mouse xenograft model was established to investigate the roles of circ_0008039 in BC in vivo. We found that circ_0008039 and SKA2 were upregulated in BC tissues and cells, while miR‐140‐3p was downregulated. Knockdown of circ_0008039 suppressed BC cell proliferation, migration, invasion, and glycolysis. Moreover, miR‐140‐3p could bind to circ_0008039 and its inhibition reversed the inhibitory effect of circ_0008039 interference on proliferation, migration, invasion, and glycolysis in BC cells. SKA2 was verified as a direct target of miR‐140‐3p and its overexpression partially inhibited the suppressive effect of miR‐140‐3p restoration in BC cells. Additionally, circ_0008039 positively regulated SKA2 expression by sponging miR‐140‐3p. Consistently, silencing circ_0008039 restrained tumor growth via increasing miR‐140‐3p and decreasing SKA2. In conclusion, circ_0008039 downregulation suppressed BC cell proliferation, migration, invasion, and glycolysis partially through regulating the miR‐140‐3p/SKA2 axis, providing an important theoretical basis for treatment of BC.

Abbreviations

ANOVA
analysis of variance
BC
breast cancer
circRNAs
circular RNAs
DMSO
dimethyl sulfoxide
ECAR
extracellular acidification rate
ECL
enhanced chemiluminescence
FBS
fetal bovine serum
HK2
hexokinase II
MEGM
mammary epithelial growth medium
miR‐140‐3p
microRNA‐140‐3p
MTT
methylthiazolyldiphenyl‐tetrazolium bromide
PBS
phosphate‐buffered saline
PRKAR1B
protein kinase A regulatory subunit R1‐beta
SD
standard ± deviation
SKA2
spindle and kinetochore‐associated protein 2
  相似文献   

5.
6.
Lung cancer is one of the most common cancers, still characterized by high mortality rates. As lipid metabolism contributes to cancer metabolic reprogramming, several lipid metabolism genes are considered prognostic biomarkers of cancer. Statins are a class of lipid‐lowering compounds used in treatment of cardiovascular disease that are currently studied for their antitumor effects. However, their exact mechanism of action and specific conditions in which they should be administered remains unclear. Here, we found that simvastatin treatment effectively promoted antiproliferative effects and modulated lipid metabolism‐related pathways in non‐small cell lung cancer (NSCLC) cells and that the antiproliferative effects of statins were potentiated by overexpression of acyl‐CoA synthetase long‐chain family member 3 (ACSL3). Moreover, ACSL3 overexpression was associated with worse clinical outcome in patients with high‐grade NSCLC. Finally, we found that patients with high expression levels of ACSL3 displayed a clinical benefit of statins treatment. Therefore, our study highlights ACSL3 as a prognostic biomarker for NSCLC, useful to select patients who would obtain a clinical benefit from statin administration.

Abbreviations

3‐HMGCR
3‐hydroxy‐3‐methylglutaryl‐coenzyme A reductase
95% CI
95% confidence intervals
ACSL3
acyl‐CoA synthetase long‐chain family member 3
ACSLs
long‐chain acyl‐CoA synthetases
ALP
alkaline phosphatase
APOA1
apolipoprotein A1
ATCC
American Type Culture Collection
CASP9
caspase 9
ECAR
extracellular acidification rate
ECOG
Eastern Cooperative Oncology Group
EMT
epithelial‐to‐mesenchymal transition
ER
endoplasmic reticulum
FAs
fatty acids
FFPE
formalin‐fixed, paraffin‐embedded
GTEx
genotype‐tissue expression
HR
Hazard ratio
IC50
half‐maximal inhibitory concentration
LDH
lactate dehydrogenase
MTT
3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium
NID1
nidogen 1
No ORF
no open reading frame
NSCLC
non‐small cell lung cancer
OCR
oxygen consumption rate
OS
overall survival
PGE2
prostaglandins E2
RETN
resistin
TCGA
The Cancer Genome Atlas
TMA
tumor tissue microarray
  相似文献   

7.
8.
Persistent mortality rates of medulloblastoma (MB) and severe side effects of the current therapies require the definition of the molecular mechanisms that contribute to tumor progression. Using cultured MB cancer stem cells and xenograft tumors generated in mice, we show that low expression of miR‐326 and its host gene β‐arrestin1 (ARRB1) promotes tumor growth enhancing the E2F1 pro‐survival function. Our models revealed that miR‐326 and ARRB1 are controlled by a bivalent domain, since the H3K27me3 repressive mark is found at their regulatory region together with the activation‐associated H3K4me3 mark. High levels of EZH2, a feature of MB, are responsible for the presence of H3K27me3. Ectopic expression of miR‐326 and ARRB1 provides hints into how their low levels regulate E2F1 activity. MiR‐326 targets E2F1 mRNA, thereby reducing its protein levels; ARRB1, triggering E2F1 acetylation, reverses its function into pro‐apoptotic activity. Similar to miR‐326 and ARRB1 overexpression, we also show that EZH2 inhibition restores miR‐326/ARRB1 expression, limiting E2F1 pro‐proliferative activity. Our results reveal a new regulatory molecular axis critical for MB progression.

Abbreviations

ARRB1
β‐arrestin1
BTC
bulk tumor cell
CSCs
cancer stem cells
EZH2
enhancer of zeste homolog 2
GCP
granule cell progenitors
MB
medulloblastoma
OFC
oncosphere‐forming cell
  相似文献   

9.
High‐risk neuroblastoma (NB) patients with 11q deletion frequently undergo late but consecutive relapse cycles with fatal outcome. To date, no actionable targets to improve current multimodal treatment have been identified. We analyzed immune microenvironment and genetic profiles of high‐risk NB correlating with 11q immune status. We show in two independent cohorts that 11q‐deleted NB exhibits various immune inhibitory mechanisms, including increased CD4+ resting T cells and M2 macrophages, higher expression of programmed death‐ligand 1, interleukin‐10, transforming growth factor‐beta‐1, and indoleamine 2,3‐dioxygenase 1 (P < 0.05), and also higher chromosomal breakages (P ≤ 0.02) and hemizygosity of immunosuppressive miRNAs than MYCN‐amplified and other 11q‐nondeleted high‐risk NB. We also analyzed benefits of maintenance treatment in 83 high‐risk stage M NB patients focusing on 11q status, either with standard anti‐GD2 immunotherapy (n = 50) or previous retinoic acid‐based therapy alone (n = 33). Immunotherapy associated with higher EFS (50 vs. 30, P = 0.028) and OS (72 vs. 52, P = 0.047) at 3 years in the overall population. Despite benefits from standard anti‐GD2 immunotherapy in high‐risk NB patients, those with 11q deletion still face poor outcome. This NB subgroup displays intratumoral immune suppression profiles, revealing a potential therapeutic strategy with combination immunotherapy to circumvent this immune checkpoint blockade.

Abbreviations

11q‐del
11q‐deleted
ADCC
antibody‐dependent cellular cytotoxicity
CDC
complement‐dependent cytotoxicity
COJEC
chemotherapeutic agents cisplatin, vincristine, carboplatin, etoposide, and cyclophosphamide
CTLA‐4
cytotoxic T lymphocyte antigen 4
EFS
event‐free survival
FISH
fluorescence in situ hybridization
HR
hazard ratio
ICI
immune checkpoint inhibitor
IDO1
indoleamine 2,3‐dioxygenase 1
IFN‐γ
interferon‐γ
IL‐10
interleukin 10
INRG
International Neuroblastoma Risk Group
miR
microRNA
MLPA
multiplex ligation‐dependent probe amplification
MMR
mismatch repair
MNA
MYCN amplification
MS
metastatic special stage
MSI
microsatellite instability
NB
neuroblastoma
NCA
numerical chromosome aberrations
NOS
nitric oxide synthase
OS
overall survival
PD‐1
programmed cell death protein 1
PD‐L1
programmed death‐ligand 1
SCA
segmental chromosome aberrations
TAM
tumor‐associated macrophages
Tfh
follicular helper T cells
TGF‐β
tumor growth factor‐β
TMB
tumor mutational burden
TME
tumor microenvironment
TNF‐α
tumor necrosis factor‐α
Treg
regulatory T cells
  相似文献   

10.
The WJOG8815L phase II clinical study involves patients with non‐small cell lung cancer (NSCLC) that harbored the EGFR T790M mutation, which confers resistance to EGFR tyrosine kinase inhibitors (TKIs). The purpose of this study was to assess the predictive value of monitoring EGFR genomic alterations in circulating tumor DNA (ctDNA) from patients with NSCLC that undergo treatment with the third‐generation EGFR‐TKI osimertinib. Plasma samples of 52 patients harboring the EGFR T790M mutation were obtained pretreatment (Pre), on day 1 of treatment cycle 4 (C4) or cycle 9 (C9), and at diagnosis of disease progression or treatment discontinuation (PD/stop). CtDNA was screened for EGFR‐TKI‐sensitizing mutations, the EGFR T790M mutation, and other genomic alterations using the cobas EGFR Mutation Test v2 (cobas), droplet digital PCR (ddPCR), and targeted deep sequencing. Analysis of the sensitizing—and T790M—EGFR mutant fractions (MFs) was used to determine tumor mutational burden. Both MFs were found to decrease during treatment, whereas rebound of the sensitizing EGFR MF was observed at PD/stop, suggesting that osimertinib targeted both T790M mutation‐positive tumors and tumors with sensitizing EGFR mutations. Significant differences in the response rates and progression‐free survival were observed between the sensitizing EGFR MF‐high and sensitizing EGFR MF‐low groups (cutoff: median) at C4. In conclusion, ctDNA monitoring for sensitizing EGFR mutations at C4 is suitable for predicting the treatment outcomes in NSCLC patients receiving osimertinib (Clinical Trial Registration No.: UMIN000022076).

Abbreviations

CIs
confidence intervals
ctDNA
circulating tumor DNA
ddPCR
droplet digital PCR
EGFR
epidermal growth factor receptor
MFs
mutant fractions
NGS
next‐generation sequencing
NSCLC
non‐small cell lung cancer
ORR
overall response rate
OS
overall survival
PD
progressive disease
PFS
progression‐free survival
PR
partial response
SD
stable disease
TKI
tyrosine kinase inhibitor
  相似文献   

11.
12.
13.
《Molecular oncology》2021,15(5):1412
The cellular receptor Notch1 is a central regulator of T‐cell development, and as a consequence, Notch1 pathway appears upregulated in > 65% of the cases of T‐cell acute lymphoblastic leukemia (T‐ALL). However, strategies targeting Notch1 signaling render only modest results in the clinic due to treatment resistance and severe side effects. While many investigations reported the different aspects of tumor cell growth and leukemia progression controlled by Notch1, less is known regarding the modifications of cellular metabolism induced by Notch1 upregulation in T‐ALL. Previously, glutaminolysis inhibition has been proposed to synergize with anti‐Notch therapies in T‐ALL models. In this work, we report that Notch1 upregulation in T‐ALL induced a change in the metabolism of the important amino acid glutamine, preventing glutamine synthesis through the downregulation of glutamine synthetase (GS). Downregulation of GS was responsible for glutamine addiction in Notch1‐driven T‐ALL both in vitro and in vivo. Our results also confirmed an increase in glutaminolysis mediated by Notch1. Increased glutaminolysis resulted in the activation of the mammalian target of rapamycin complex 1 (mTORC1) pathway, a central controller of cell growth. However, glutaminolysis did not play any role in Notch1‐induced glutamine addiction. Finally, the combined treatment targeting mTORC1 and limiting glutamine availability had a synergistic effect to induce apoptosis and to prevent Notch1‐driven leukemia progression. Our results placed glutamine limitation and mTORC1 inhibition as a potential therapy against Notch1‐driven leukemia.

Abbreviations

7‐AAD
7‐Aminoactinomycin D
BPTES
bis‐2‐(5‐phenylacetamido‐1,2,4‐thiadiazol‐2‐yl)ethyl sulfide
DON
diazo‐5‐oxo‐L‐norleucine
ECAR
extracellular acidification rate
GDH
glutamate dehydrogenase
GLS
glutaminase
GS
glutamine synthetase
GSI
γ‐secretase inhibitor
MSO
L‐methionine sulfoximine
mTORC1
mammalian target of rapamycin complex 1
NICD
Notch intracellular domain
PI
propidium iodide
RAP
rapamycin
T‐ALL
T‐cell acute lymphoblastic leukemia
TCA
tricarboxylic acid
αKG
α‐ketoglutarate
  相似文献   

14.
Approximately 85% colorectal cancers (CRCs) are thought to evolve through the adenoma‐to‐carcinoma sequence associated with specific molecular alterations, including the 5‐hydroxymethylcytosine (5hmC) signature in circulating cell‐free DNA (cfDNA). To explore colorectal disease progression and evaluate the use of cfDNA as a potential diagnostic factor for CRC screening, here, we performed genome‐wide 5hmC profiling in plasma cfDNA and tissue genomic DNA (gDNA) acquired from 101 samples (63 plasma and 38 tissues), collected from 21 early‐stage CRC patients, 21 AD patients, and 21 healthy controls (HC). The gDNA and cfDNA 5hmC signatures identified in gene bodies and promoter regions in CRC and AD groups were compared with those in HC group. All the differential 5hmC‐modified regions (DhMRs) were gathered into four clusters: Disease‐enriched, AD‐enriched, Disease‐lost, and AD‐lost, with no overlap. AD‐related clusters, AD‐enriched and AD‐lost, displayed the unique 5hmC signals in AD patients. Disease‐enriched and Disease‐lost clusters indicated the general 5hmC changes when colorectal lesions occurred. Cancer patients with a confirmable adenoma history segmentally gathered in AD‐enriched clusters. KEGG functional enrichment and GO analyses determined distinct differential 5hmC‐modified profiles in cfDNA of HC individuals, AD, and CRC patients. All patients had comprehensive 5hmC signatures where Disease‐enriched and Disease‐lost DhMR clusters demonstrated similar epigenetic modifications, while AD‐enriched and AD‐lost DhMR clusters indicated complicated subpopulations in adenoma. Analysis of CRC patients with adenoma history showed exclusive 5hmC‐gain characteristics, consistent with the ‘parallel’ evolution hypothesis in adenoma, either developed through the adenoma‐to‐carcinoma sequence or not. These findings deepen our understanding of colorectal disease and suggest that the 5hmC modifications of different pathological subtypes (cancer patients with or without adenoma history) could be used to screen early‐stage CRC and assess adenoma malignancy with large‐scale follow‐up studies in the future.

Abbreviations

5hmC
5‐hydroxymethylcytosine
AD
precancerous adenoma
cfDNA
cell‐free DNA
CRC
colorectal cancer
DhmR
differential 5hmC‐modified regions
gDNA
genomics DNA
HC
healthy control
hMRs
5hmC‐modified regions
  相似文献   

15.
Lymph node metastasis (LNM), a critical prognostic determinant in cancer patients, is critically influenced by the presence of numerous heterogeneous cancer‐associated fibroblasts (CAFs) in the tumor microenvironment. However, the phenotypes and characteristics of the various pro‐metastatic CAF subsets in cervical squamous cell carcinoma (CSCC) remain unknown. Here, we describe a CAF subpopulation with elevated periostin expression (periostin+CAFs), located in the primary tumor sites and metastatic lymph nodes, that positively correlated with LNM and poor survival in CSCC patients. Mechanistically, periostin+CAFs impaired lymphatic endothelial barriers by activating the integrin‐FAK/Src‐VE‐cadherin signaling pathway in lymphatic endothelial cells and consequently enhanced metastatic dissemination. In contrast, inhibition of the FAK/Src signaling pathway alleviated periostin‐induced lymphatic endothelial barrier dysfunction and its related effects. Notably, periostinCAFs were incapable of impairing endothelial barrier integrity, which may explain the occurrence of CAF‐enriched cases without LNM. In conclusion, we identified a specific periostin+CAF subset that promotes LNM in CSCC, mainly by impairing the lymphatic endothelial barriers, thus providing the basis for potential stromal fibroblast‐targeted interventions that block CAF‐dependent metastasis.

Abbreviations

CAFs
cancer‐associated fibroblasts
CM
conditioned medium
CSCC
cervical squamous cell carcinoma
HDLECs
human dermal lymphatic endothelial cells
LN
lymph node
LNM
lymph node metastasis
LVs
lymphatic vessels
MFI
mean fluorescence intensity
NC
negative control
NOFs
normal fibroblasts
SFM
serum‐free media
TAMs
tumor‐associated macrophages
TEM
transmission electron microscopy
TME
tumor microenvironment
  相似文献   

16.
Early stage localized prostate cancer (PCa) has an excellent prognosis; however, patient survival drops dramatically when PCa metastasizes. The molecular mechanisms underlying PCa metastasis are complex and remain unclear. Here, we examine the role of a new member of the fatty acid‐binding protein (FABP) family, FABP12, in PCa progression. FABP12 is preferentially amplified and/or overexpressed in metastatic compared to primary tumors from both PCa patients and xenograft animal models. We show that FABP12 concurrently triggers metastatic phenotypes (induced epithelial‐to‐mesenchymal transition (EMT) leading to increased cell motility and invasion) and lipid bioenergetics (increased fatty acid uptake and accumulation, increased ATP production from fatty acid β‐oxidation) in PCa cells, supporting increased reliance on fatty acids for energy production. Mechanistically, we show that FABP12 is a driver of PPARγ activation which, in turn, regulates FABP12''s role in lipid metabolism and PCa progression. Our results point to a novel role for a FABP‐PPAR pathway in promoting PCa metastasis through induction of EMT and lipid bioenergetics.

Abbreviations

AR
androgen receptor
ATP
adenosine triphosphate
CN
copy number
CPT1
carnitine palmitoyltransferase I
CS
citrate synthase
EMT
epithelial–mesenchymal transition
ET
electron transfer‐state
FABP
fatty acid‐binding protein
LD
lipid droplet
OA
oleic acid
PCa
prostate cancer
PPAR
peroxisome proliferator‐activated receptor
PPRE
peroxisome proliferator‐activated receptor response element
TZD
thiazolidinediones
  相似文献   

17.
CDKN1B haploinsufficiency promotes the development of several human cancers. The gene encodes p27Kip1, a protein playing pivotal roles in the control of growth, differentiation, cytoskeleton dynamics, and cytokinesis. CDKN1B haploinsufficiency has been associated with chromosomal or gene aberrations. However, very few data exist on the mechanisms by which CDKN1B missense mutations facilitate carcinogenesis. Here, we report a functional study on a cancer‐associated germinal p27Kip1 variant, namely glycine9‐>arginine‐p27Kip1 (G9R‐p27Kip1) identified in a parathyroid adenoma. We unexpectedly found that G9R‐p27Kip1 lacks the major tumor suppressor activities of p27Kip1 including its antiproliferative and pro‐apoptotic functions. In addition, G9R‐p27Kip1 transfection in cell lines induces the formation of more numerous and larger spheres when compared to wild‐type p27Kip1‐transfected cells. We demonstrated that the mutation creates a consensus sequence for basophilic kinases causing a massive phosphorylation of G9R‐p27Kip1 on S12, a residue normally never found modified in p27Kip1. The novel S12 phosphorylation appears responsible for the loss of function of G9R‐p27Kip1 since S12AG9R‐p27Kip1 recovers most of the p27Kip1 tumor suppressor activities. In addition, the expression of the phosphomimetic S12D‐p27Kip1 recapitulates G9R‐p27Kip1 properties. Mechanistically, S12 phosphorylation enhances the nuclear localization of the mutant protein and also reduces its cyclin‐dependent kinase (CDK)2/CDK1 inhibition activity. To our knowledge, this is the first reported case of quantitative phosphorylation of a p27Kip1 variant on a physiologically unmodified residue associated with the loss of several tumor suppressor activities. In addition, our findings demonstrate that haploinsufficiency might be due to unpredictable post‐translational modifications due to generation of novel consensus sequences by cancer‐associated missense mutations.

Abbreviations

1D/WB
monodimensional western blotting
2D/WB
two‐dimensional western blotting
CDK
cyclin‐dependent kinase
CHX
cycloheximide
G9R‐p27
glycine9‐>arginine‐p27
IUPs
intrinsically unstructured proteins
mAbs
monoclonal antibodies
MEN
multiple endocrine neoplasia
MENX
multiple endocrine neoplasia X
PTMs
post‐translational modifications
rAbs
rabbit antibodies
TSG
tumor suppressor gene
wt‐p27
wild‐type p27
  相似文献   

18.
Long non‐coding RNAs (lncRNAs) are emerging as key molecules in various cancers, yet their potential roles in the pathogenesis of breast cancer are not fully understood. Herein, using microarray analysis, we revealed that the lncRNA RACGAP1P, the pseudogene of Rac GTPase activating protein 1 (RACGAP1), was up‐regulated in breast cancer tissues. Its high expression was confirmed in 25 pairs of breast cancer tissues and 8 breast cell lines by qRT‐PCR. Subsequently, we found that RACGAP1P expression was positively correlated with lymph node metastasis, distant metastasis, TNM stage, and shorter survival time in 102 breast cancer patients. Then, in vitro and in vivo experiments were designed to investigate the biological function and regulatory mechanism of RACGAP1P in breast cancer cell lines. Overexpression of RACGAP1P in MDA‐MB‐231 and MCF7 breast cell lines increased their invasive ability and enhanced their mitochondrial fission. Conversely, inhibition of mitochondrial fission by Mdivi‐1 could reduce the invasive ability of RACGAP1P‐overexpressing cell lines. Furthermore, the promotion of mitochondrial fission by RACGAP1P depended on its competitive binding with miR‐345‐5p against its parental gene RACGAP1, leading to the activation of dynamin‐related protein 1 (Drp1). In conclusion, lncRNA RACGAP1P promotes breast cancer invasion and metastasis via miR‐345‐5p/RACGAP1 pathway‐mediated mitochondrial fission.

Abbreviations

CDS
coding sequence
ceRNAs
competitive endogenous RNAs
Drp1
dynamin‐related protein 1
FFPE
formalin‐fixed paraffin‐embedded
lncRNAs
long non‐coding RNAs
miRNAs
microRNAs
RACGAP1
Rac GTPase activating protein 1
TCGA
The Cancer Genome Atlas
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号