首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 625 毫秒
1.
目的对比分析膜单元与弹簧单元对颈部韧带生物力学响应的影响。方法基于现有的6岁儿童颈部有限元模型,将其中的韧带分别用膜与弹簧两种单元类型模拟,进行儿童颈椎C4~5椎段动态拉伸实验和全颈椎拉伸实验。同时采用膜单元模型进行弯曲仿真试验,并分析仿真效果。结果在C4~5椎段动态拉伸实验中,膜单元仿真与弹簧单元仿真最终失效力分别为1 207、842 N,与尸体实验分别相差0. 6%、30. 6%;在全颈椎拉伸实验中,膜单元仿真峰值力与尸体实验相差1. 8%,弹簧单元仿真峰值力为484 N,与尸体实验相差较大。膜单元弯曲试验仿真效果良好。结论弹簧单元在模拟受力方面存在一定局限性,而膜单元具有较高的生物仿真度,更能体现韧带的生物力学响应。  相似文献   

2.
目的构建较高仿真度的6岁儿童乘员下肢有限元模型,验证6岁儿童乘员膝关节的有效性;分析在前碰撞载荷下生长板对儿童膝关节的生物力学响应及损伤机制。方法基于儿童生理结构及CT影像构建包含生长板的6岁儿童乘员下肢有限元模型,赋予相应的材料属性;参照Kerrigan等及Haut等的生物力学实验,验证模型的有效性,分析不同生长板材料属性对膝关节损伤的影响。结果通过模型仿真实验与生物力学实验曲线对比验证了模型的有效性;在膝关节区域,生长板的存在可以改变儿童乘员下肢骨折的损伤模式;不同生长板的材料属性,可以影响股骨轴向损伤力的阈值及达到损伤阈值而发生骨折的相对位置。结论所建模型得到有效验证,可用于6儿童乘员膝关节损伤生物力学响应及损伤机制的相关研究及应用。  相似文献   

3.
基于CT扫描,建立具有精确骨骼几何及详细椎间盘解剖学结构的3岁儿童C4-C5颈椎段有限元模型;参考成人颈部生物材料实验数据及相关成人与对比研究结果,采用缩放方法计算得到3岁儿童颈部组织材料参数;分别在准静态、动态拉伸以及准静态弯曲-伸展、侧向弯曲及轴向旋转载荷条件下,对模型进行验证。结果显示,准静态拉伸刚度为211.8 N/mm,动态拉伸最终失效力为759.9 N,最终失效位移为5.08 mm,均与实验值吻合良好;准静态伸展、弯曲、侧向弯曲及轴向旋转运动范围分别为9.75°、9.29°、3.79°和7.04°,均在实验基准数据允许的误差范围内,吻合良好。结论表明:该模型能较好地反映3岁儿童C4-C5颈椎段在准静态、动态拉伸以及准静态弯曲-伸展、侧向弯曲和轴向旋转载荷下的生物力学特性,具有较高的生物逼真度。  相似文献   

4.
目的建立符合解剖结构的头颈三维动力学有限元模型,研究冲击力作用下头颈部动力学响应。方法采用中国成年男性志愿者颈部CT扫描图像,获取颈椎三维点云数据,通过有限元前处理软件ICEM-CFD和Hyper Mesh建立颈部有限元模型。模型包括椎骨、椎间盘、小关节、韧带和软骨等组织,结合已建立并验证的头部有限元模型,装配成具有详细解剖结构的人体头颈部有限元模型。结果模型参考公开发表的头颈部轴向冲击实验数据进行验证,其颈部变形、头部加速度、接触力曲线以及损伤部位与实验数据吻合较好。结论动力学三维有限元模型可用于汽车安全、运动学损伤等领域人体头颈部的动态响应和损伤机制研究。  相似文献   

5.
研究在动态载荷下6岁儿童下肢长骨的损伤极限。分别对股骨、胫骨的有限元模型进行动态三点弯曲仿真试验,并通过有限元模型仿真试验与尸体试验结果的对比,探究相关参数对6岁儿童下肢长骨骨折的影响。仿真试验所得冲击块的撞击力 位移曲线走势与尸体试验的结果基本吻合,验证了该模型的有效性。股骨和胫骨失效时的撞击力分别为2.52和1.96 kN,位移分别为11.88和23.49 mm。与成人相比,儿童骨骼的弹性模量略低,并且骨骼韧性较好,使得撞击时发生骨折的风险相对降低。本研究为儿童下肢损伤机理及防护措施的研究提供了科学的基础数据。  相似文献   

6.
对建立并验证的全颈椎有限元模型进行仿真以分析后碰撞中颈部的响应及其损伤机制.模型包括C1-T1的8块椎骨以及椎间盘、韧带和肌肉等软组织,共35 042个节点和22 618个单元.运用后碰撞志愿者实验数据对模型进行仿真,得到各椎骨间相对转角、各椎骨应力、应变曲线及应力云图.颈部S形曲线、C形曲线得到体现;最大应力、应变主要发生在颈部过度伸展过程中,上位颈椎中C2应力、应变较大,而下位颈椎中T1数值最大,受力较大值发生在椎体上下表面及其关节突关节面上,易产生多部位骨折.分析结果可为人体颈部损伤的预防、诊断和治疗提供理论依据.  相似文献   

7.
目的 建立T2~L5胸腰椎有限元模型并验证其有效性,为探究脊柱冲击载荷下的动态响应特性及损伤机制提供数值模型支撑。方法 基于CT扫描图像数据建立T2~L5胸腰椎三维有限元模型;仿真分析施加不同力矩下(屈伸、旋转和侧弯工况)T12~L1段载荷-转角曲线,并与文献报道的数据进行对比;对T2~6、T7~11和T12~L5 3段脊柱有限元模型施加不同高度下的自由落体载荷并进行仿真分析,获得轴向力峰值和弯矩,并与文献报道的数据进行对比分析。结果 T12~L1段脊柱有限元模型受不同方向力矩发生最大转角在-2.24°~1.55°,与文献数据吻合良好。在不同跌落高度下,T2~6、T7~11和T12~L5 3段脊柱有限元模型的轴向峰值力分别为1.7~5.3、1.3~5.5、1.3~7.5 kN,均处于文献数据误差范围内;脊柱与椎间盘应力云图显示,椎体由外缘最先受力,椎间盘由髓核承受主要载荷,符合实际脊柱损伤发生机制。结论 所建立的T2~L5脊柱模型能够正确模拟不同工况下脊柱的生物力学行为特性,分析结果具有有效性。  相似文献   

8.
为了验证汽车碰撞过程中人体颈部的损伤情况,建立了人体颈椎C4-C6部分有限元生物力学模型,模型组织包括皮质骨、松质骨、纤维环、髓核、韧带以及关节面,并在各组织接触部位设置了接触,以便更好地模拟模型在前冲击下的运动趋势。对模型施加前冲击载荷,研究各组织的应力及应变分布情况。经过验证,模型在前冲击过程中,其位移模拟数据基本在实验数据区间范围内,模拟了颈椎C4-C6部分在前冲击载荷下的运动趋势,具有较好的生物逼真度,基本反映了人体颈部冲击动力学响应。  相似文献   

9.
目的提升MADYMO儿童人体模型中原始胸部柔体模型的生物仿真度,深入研究儿童乘员胸部各部位损伤。方法采用CT图像逆向建模方法,建立6岁儿童胸部有限元模型。通过替换MADYMO假人库中6岁儿童人体模型的柔体胸部,建立带有胸部生物力学模型的改进人体模型。模型采用Kroell成人胸部碰撞试验的Irwin与Mertz缩放通道法,以及Ouyang的儿童尸体胸部冲击试验联合验证。结果所建胸部模型的响应与缩放通道法和尸体试验数据都较为吻合,胸部模型比原始柔体模型更加准确,且在回弹阶段与尸体试验吻合。结论所建模型有效性得到验证,结果可进一步用于车辆正面碰撞乘员损伤的研究。  相似文献   

10.
背景:由于儿童颈椎尚未发育成熟,韧带相对松弛、关节面相对水平、钩椎关节开始发育,因此儿童颅颈交界区和下颈椎更易损伤.研究儿童颈部的力学特性和损伤机制对于其保护和治疗具有重要意义.目的:建立4岁儿童全颈椎有限元模型,对比分析各节段关节面的最大应力值,了解其不同运动状态下的力学变化规律.方法:将连续扫描的颈椎断层影像原始数...  相似文献   

11.
Although a number of finite element (FE) adult cervical spine models have been developed to understand the injury mechanisms of the neck in automotive related crash scenarios, there have been fewer efforts to develop a child neck model. In this study, a 10-year-old ligamentous cervical spine FE model was developed for application in the improvement of pediatric safety related to motor vehicle crashes. The model geometry was obtained from medical scans and meshed using a multi-block approach. Appropriate properties based on review of literature in conjunction with scaling were assigned to different parts of the model. Child tensile force–deformation data in three segments, Occipital-C2 (C0–C2), C4–C5 and C6–C7, were used to validate the cervical spine model and predict failure forces and displacements. Design of computer experiments was performed to determine failure properties for intervertebral discs and ligaments needed to set up the FE model. The model-predicted ultimate displacements and forces were within the experimental range. The cervical spine FE model was validated in flexion and extension against the child experimental data in three segments, C0–C2, C4–C5 and C6–C7. Other model predictions were found to be consistent with the experimental responses scaled from adult data. The whole cervical spine model was also validated in tension, flexion and extension against the child experimental data. This study provided methods for developing a child ligamentous cervical spine FE model and to predict soft tissue failures in tension.  相似文献   

12.
An anatomically accurate, three-dimensional, nonlinear finite element model of the human cervical spine was developed using computed tomography images and cryomicrotome sections. The detailed model included the cortical bone, cancellous core, endplate, lamina, pedicle, transverse processes and spinous processes of the vertebrae; the annulus fibrosus and nucleus pulposus of the intervertebral discs; the uncovertebral joints; the articular cartilage, the synovial fluid and synovial membrane of the facet joints; and the anterior and posterior longitudinal ligaments, interspinous ligaments, capsular ligaments and ligamentum flavum. The finite element model was validated with experimental results: force–displacement and localized strain responses of the vertebral body and lateral masses under pure compression, and varying eccentric anterior-compression and posterior-compression loading modes. This experimentally validated finite element model was used to study the biomechanics of the cervical spine intervertebral disc by quantifying the internal axial and shear forces resisted by the ventral, middle, and dorsal regions of the disc under the above axial and eccentric loading modes. Results indicated that higher axial forces (compared to shear forces) were transmitted through different regions of the disc under all loading modes. While the ventral region of the disc resisted higher variations in axial force, the dorsal region transmitted higher shear forces under all loading modes. These findings may offer an insight to better understand the biomechanical role of the human cervical spine intervertebral disc.  相似文献   

13.
This study presents a specimen-specific C2–C7 cervical spine finite element model that was developed using multiblock meshing techniques. The model was validated using in-house experimental flexibility data obtained from the cadaveric specimen used for mesh development. The C2–C7 specimen was subjected to pure continuous moments up to ±1.0 N m in flexion, extension, lateral bending, and axial rotation, and the motions at each level were obtained. Additionally, the specimen was divided into C2–C3, C4–C5, and C6–C7 functional spinal units (FSUs) which were tested in the intact state as well as after sequential removal of the interspinous, ligamentum flavum, and capsular ligaments. The finite element model was initially assigned baseline material properties based on the literature, but was calibrated using the experimental motion data which was obtained in-house, while utlizing the ranges of material property values as reported in the literature. The calibrated model provided good agreement with the nonlinear experimental loading curves, and can be used to further study the response of the cervical spine to various biomechanical investigations.  相似文献   

14.
Very few finite element models of the cervical spine have been developed to investigate internal stress on the soft tissues under whiplash loading situation. In the present work, an approach was used to generate a finite element model of the head (C0), the vertebrae (C1–T1) and their soft tissues. The global acceleration and displacement, the neck injury criterion (NIC), segmental angulations and stress of soft tissues from the model were investigated and compared with published data under whiplash loading. The calculated acceleration and displacement agreed well with the volunteer experimental data. The peak NIC was lower than the proposed threshold. The cervical S- and C-shaped curves were predicted based on the rotational angles. The highest segmental angle and maximum stress of discs mainly occurred at C7–T1. Greater stress was located in the anterior and posterior regions of the discs. For the ligaments, peak stress was at anterior longitudinal ligaments. Each level of soft tissues experienced the greatest stress at the time of cervical S- and C-shaped curves. The cervical spine was likely at risk of hyperextension injuries during whiplash loading. The model included more anatomical details compared to previous studies and provided an understanding of whiplash injuries.  相似文献   

15.
目的 探讨利用螺旋 CT建立颈椎椎体次全切除减压植骨固定的三维有限元模型的高度数字化方法,为研究颈椎减压手术的生物力学实验提供标准模型。方法 对健康成年男性志愿者进行CT 扫描,获得C4~C7节段的断层图片,将数据保存为Dicom格式,导入Mimics 9.1 软件进行三维几何模型重建,形成三维图像,利用Freeform 软件进行模型修改和表面划分,以IGES格式转入有限元软件Ansys 9.0完成颈椎骨性模型的建立。利用有限元软件Ansys 9.0,在颈椎骨性模型的基础上,补建终板、补充建立终板、 椎间盘、 髓核、 前纵韧带、 后纵韧带、 黄韧带、 棘间韧带、 棘上韧带等结构。然后模拟颈椎椎体次全切除,将C5椎体、前纵韧带、上下椎间盘切除,将建立的钛网、钢板实体模型添加到减压区。采用合适的材料性质和实体单元类型对模型进行有限元网格划分。结果 颈椎脊柱三维模型有限元网格划分结果:利用三维重建软件Mimics 和有限元软件Ansys 9.0 , 成功进行椎体次全切除减压钛网植骨钢板固定三维模型有限元网格划分。整个模型共有138995个节点和94039个单元,建成后的三维有限元模型与实体组织具有良好的几何相似性。结论 建立的椎体次全切除植骨固定手术三维有限元模型接近真实的生物力学标本,可以进行临床和实验研究。  相似文献   

16.
不同载荷作用下头部生物力学响应仿真分析   总被引:1,自引:0,他引:1  
目的建立符合解剖结构的人颅骨三维有限元模型,研究多种载荷作用下头部生物力学响应。方法通过建立具有解剖结构的高精度头部有限元模型,颅骨采用能模拟骨折的弹塑性材料本构模型,结合已发表的正面冲击颅内压实验、动态颅骨骨折实验、头部跌落实验结果,仿真再现实验过程中头部受冲击载荷作用下的生物力学响应、颅骨骨折及头部不同速度下的跌落响应。结果前碰撞表现出冲击与对冲侧正-负颅内压分布,相近载荷下枕骨变形比前额、顶骨严重,跌落中速度越快损伤越大。结论建立精确解剖结构的头部有限元模型可以较好模拟头部在冲击、跌落等载荷下的生物力学响应。通过量化接触力、颅内压力等参数来评价头部损伤风险,为防护系统的设计提供科学依据。  相似文献   

17.
The objective of this study was to develop a finite element model of the lumbar spinal column of an eight-year-old human spine and compare flexibilities under pure moments, adult, and pediatric loading with different material models. The geometry was extracted from computed tomography scans. The model included the cortical and cancellous bones, growth plates, ligaments, and discs. Adult, adolescent, and pediatric material models were used. Flexion (8 Nm), extension (6 Nm), lateral bending (6 Nm), and axial rotation (4 Nm) moments representing adult loads were applied to the three material models. Pediatric loading (0.5 Nm) was applied under these loadings to the eight-year-old spine using adult and pediatric material models. Flexibilities depended on spinal level, loading mode, and material model. Outputs incorporating the pediatric material model responded with increased flexibilities compared to the adult and adolescent material models, with one exception. This was true for the adult and pediatric loading conditions. While the sagittal and coronal bending responses were not considerably different between the adult and pediatric loadings, axial rotation responses were greater under the adult loading. This model may be used to determine intrinsic responses, such as stresses and strains, for improved characterizations of the juvenile spine behavior.  相似文献   

18.
背景临床上颈椎钩突关节增生经常是多节段存在,由于多间隙病变复杂,手术方案的制定需要考虑多种因素。临床医生发现,即使是采用微创前路椎间孔减压术治疗两节段的神经根型颈椎病,减压充分后也不一定都需要行椎间融合术。目的本文对两个节段的钩突进行部分切除后,研究对颈椎稳定性的影响。方法依据健康志愿者的影像学资料,采用Mimics13.1、Solid Works2012软件建立三维几何模型,ANSYS15.0软件进行网格划分和网格优化,赋值各类组织的材料属性,建立颈椎(C2-C7)三维有限元模型,通过有限元分析技术研究部分切除单侧两个钩突后对颈椎稳定性和邻近节段椎体应力的影响。结果采用文中所述切除方法进行左侧钩突部分切除后,当切除双节段(60+60模型)时,各个工况下的最大位移相对于前3种切除方式均有明显的增大,而且各个工况下的最大应力相对于前3种切除方式均有显著增大。结论随着切除节段的增多和切除范围的增大,节段之间的活动度增大,局部应力增大,给颈椎带来一定的影响,导致颈椎不稳,加速颈椎的退变。因此在制定手术方案时,要严格掌握手术适应证,除非有明确的神经根、脊髓受压的指征,否则不可盲目扩大切除范围。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号