首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purpose: The purpose of this study was to evaluate the quantitative muscle strength to distinguish the outcomes of different injury levels in upper arm type brachial plexus injury (BPI) patients with double nerve transfer. Methods: Nine patients with C5‐C6 lesions (age = 32.2 ± 13.9 year old) and nine patients with C5‐C7 lesions (age = 32.4 ± 7.9 year old) received neurotization of the spinal accessory nerve to the suprascapular nerve combined with the Oberlin procedure (fascicles of ulnar nerve transfer to the musculocutaneous nerve) were recruited. The average time interval between operation and evaluation were 27.3 ± 21.0 and 26.9 ± 20.6 months for C5‐C6 and C5‐C7, respectively. British Medical Research Council (BMRC) scores and the objective strength measured by a handheld dynamometer were evaluated in multiple muscles to compare outcomes between C5‐C6 and C5‐C7 injuries. Results: There were no significant differences in BMRC scores between the groups. C5‐C6 BPI patients had greater quantitative strength in shoulder flexor (P = 0.02), shoulder extensor (P < 0.01), elbow flexor (P = 0.04), elbow extensor (P = 0.04), wrist extensor (P = 0.04), and hand grip (P = 0.04) than C5‐C7 BPI patients. Conclusions: Upper arm type BPI patients have a good motor recovery after double nerve transfer. The different outcomes between C5‐C6 and C5‐C7 BPI patients appeared in muscles responding to hand grip, wrist extension, and sagittal movements in shoulder and elbow joints. © 2014 Wiley Periodicals, Inc. Microsurgery 35:107–114, 2015.  相似文献   

2.
The treatment of total brachial plexus avulsion injury is difficult with unfavorable prognosis. This report presents our experience on the contralateral C7 (CC7) nerve root transfer to neurotize two recipient nerves in the patients with total BPAI. Twenty‐two patients underwent CC7 transfer to two target nerves in the injured upper limb. The patients' ages ranged from 13 to 48 years. The entire CC7 was transferred to pedicled ulnar nerve in the first stage. The interval between trauma and surgery ranged from 1 to 13 months. The ulnar nerve was transferred to recipients (median nerve and biceps branch or median nerve and triceps branch) at 2–13 months after first operation. The motor recovery of wrist and finger flexor to M3 or greater was achieved in 68.2% of patients, the sensory recovery of median nerve area recovered to S3 or greater in 45.5% of patients. The functional recovery of elbow flexor to M3 or greater was achieved in 66.7% of patients with repair of biceps branch and 20% of patients with repair of the triceps branch (P < 0.05). There were no statistical differences in median nerve function recovery at comparisons of the age younger and older than 20‐years‐old and the intervals between trauma and surgery. In conclusion, the use of CC7 transfer for repair two recipient nerves might be an option for treatment of total BPAI. The functional recovery of the repaired biceps branch appeared to be better than that of the triceps branch. © 2013 Wiley Periodicals, Inc. Microsurgery 33:605–611, 2013.  相似文献   

3.
Jerome JT  Rajmohan B 《Microsurgery》2012,32(6):445-451
Combined neurotization of both axillary and suprascapular nerves in shoulder reanimation has been widely accepted in brachial plexus injuries, and the functional outcome is much superior to single nerve transfer. This study describes the surgical anatomy for axillary nerve relative to the available donor nerves and emphasize the salient technical aspects of anterior deltopectoral approach in brachial plexus injuries. Fifteen patients with brachial plexus injury who had axillary nerve neurotizations were evaluated. Five patients had complete avulsion, 9 patients had C5, six patients had brachial plexus injury pattern, and one patient had combined axillary and suprascapular nerve injury. The long head of triceps branch was the donor in C5,6 injuries; nerve to brachialis in combined nerve injury and intercostals for C5‐T1 avulsion injuries. All these donors were identified through the anterior approach, and the nerve transfer was done. The recovery of deltoid was found excellent (M5) in C5,6 brachial plexus injuries with an average of 134.4° abduction at follow up of average 34.6 months. The shoulder recovery was good with 130° abduction in a case of combined axillary and suprascapular nerve injury. The deltoid recovery was good (M3) in C5‐T1 avulsion injuries patients with an average of 64° shoulder abduction at follow up of 35 months. We believe that anterior approach is simple and easy for all axillary nerve transfers in brachial plexus injuries. © 2012 Wiley Periodicals, Inc. Microsurgery, 2012.  相似文献   

4.

Background

Obstetric brachial plexus paralysis (OBPP) has been associated with shoulder deformities, scapular growth, and shoulder function impairment. The absence of balanced muscular forces acting on the scapula has been considered responsible for scapula dysplasia and impaired growth as compared with the normal side. Scapula growth impairment may also lead to shoulder and upper extremity dysfunction. This study aims at showing the association of primary nerve reconstruction with the restoration of scapular bone growth potential.

Methods

This is a retrospective review of 73 patients with OBPP who underwent primary shoulder reconstruction. Patients were categorized for assessment and analysis into group A, global paralysis; group B, Erb’s palsy; and group C, Erb’s palsy with C7 root involvement. Scapular posteroanterior and lateral X-rays were obtained in which four scapula dimensions were manually measured. The growth discrepancy depending on the applied treatment was investigated.

Results

The highest improvement was noted in scapular height in the Erb’s palsy group who underwent simultaneous neurotization of the suprascapular and axillary nerves. The oblique axis was more improved in the Erb’s palsy group while both big and small widths were more improved in the Erb’s palsy with C7 root involvement group in patients who underwent concomitant neurotization of the suprascapular and the axillary nerves. Functional improvement correlated positively with growth improvement in all groups and scapular dimensions.

Conclusion

Scapula growth and shoulder function improvement were higher in patients with Erb’s palsy. Simultaneous axillary and suprascapular nerve neurotization provided the best outcome in both functional and growth restoration.  相似文献   

5.
Song J  Chen L  Gu Y 《Orthopedics》2010,33(12):886
The effects of ipsilateral cervical nerve root transfer on the restoration of the rat upper trunk muscle and nerve brachial plexus root avulsion were studied. After simulated root avulsion of the upper trunk brachial plexus, 120 rats were randomly divided into 4 groups: (A) ipsilateral C7 root transfer group; (B) Oberlin group; (C) phrenic nerve group; and (D) no axillary nerve restoration group. At 3, 6, and 12 weeks postoperatively, Ochiai score, Barth feet overreaching test, Terzis grooming test, and indices of neurotization were determined in 10 rats from each group. Twelve weeks postoperatively, nearly all the behavioral, neuroelectrophysiological, and histological outcomes of the axillary nerve and deltoid muscle and some of the indices of musculocutaneous nerve and biceps brachii function in the ipsilateral C7 group were superior to those in the other 3 groups. No significant difference was found between the ipsilateral C7 group and the other 3 groups in recovery rate of wet biceps muscle weight. No significant difference was found between the ipsilateral C7 group and the Oberlin group in the recovery of the axillary nerve compound muscle action potential and biceps brachii cell size. No significant difference was found between the ipsilateral C7 group and the phrenic nerve and no axillary nerve restoration groups in amplitude recovery rate of musculocutaneous nerve compound muscle action potential. No significant difference was found between the ipsilateral C7 and the Oberlin groups in the early recovery of musculocutaneous nerve compound muscle action potential, but recovery was significantly better in the ipsilateral C7 group at 12 weeks. Ipsilateral C7 root transfer can improve the quality of restoration of muscle and nerve function in the rat upper trunk after brachial plexus root avulsion.  相似文献   

6.
Objective:To compare the effect of using partial median and ulnar nerves for treatment of C5-6 orC5-7 avulsion of the brachial plexus with that of using phrenic and spinal accessary nerves.Methods:The patients were divided into 2groups randomly according to different surgical procedures.Twelve cases were involved in the first group.The phrenic nerve was transferred to the musculocutaneous nerve or through a sural nerve graft,and the spinal accessary nerve was to the suprascapular nerve.Eleven cases were classified into the second group.A part of the fascicles of median nerve was transferred to be coapted with the motor fascicle of musculocutaneous nerve and a part of fascicles of ulnar nerve was transferred to the axillary nerve.The cases were followed up from 1to 3years and the clinical outcome was compared between the two groups.  相似文献   

7.
Wang S  Yiu HW  Li P  Li Y  Wang H  Pan Y 《Microsurgery》2012,32(3):183-188
Purpose: In this report, we present our experience on the repair of brachial plexus root avulsion injuries with the use of contralateral C7 nerve root transfers with nerve grafting through a modified prespinal route. Methods: The outcomes of the contralateral C7 nerve root transfer to neurotize the upper trunk and C5/C6 nerve roots of the total or near total brachial plexus nerve root avulsion injury in a series of 41 patients were evaluated. The contralateral C7 nerve root that was dissected to the distal end of the divisions, along with the sural nerve graft, were placed underneath the anterior scalene and longus colli muscles, and then passed through the retro‐esophageal space to neurotize the recipient nerve. The mean length of the dissected contralateral C7 nerve root was 6.5 ± 0.7 cm, and the mean length of sural nerve graft was 6.8 ± 1.9 cm. The suprascapular nerve was neurotized additionally by the phrenic nerve or the terminal motor branch of accessory nerve in some patients. Results: The mean length of the follow‐up was 47.2 ± 14.5 months. The muscle strength was graded M4 or M3 for the biceps muscle in 85.4% of patients, for the deltoid muscle in 82.9% of patients, and for the upper parts of pectoral major in 92.7% of patients. The functional recovery of shoulder abduction in the patients with the additional suprascapular nerve neurotization was remarkably improved. Conclusions: The modified prespinal route could significantly reduced the length of nerve graft in the contralateral C7 nerve root transfer to the injured upper trunk in brachial plexus root avulsion injury, and it may improve the functional outcomes, which deserves further investigations. © 2011 Wiley Periodicals, Inc. Microsurgery, 2012.  相似文献   

8.
颈7神经移位修复臂丛撕脱伤两根受损神经实验研究   总被引:1,自引:1,他引:0  
目的 探索利用颈,神经移位同时修复两根受损神经的可行性. 方法 建立大鼠颈,移位同时修复两根受损神经的动物模型,并与传统C7单组移位术进行神经再生疗效的比较. 结果 各项指标显示:术后早期(2~6周)颈,修复两根神经组神经再生效果劣于同时间段单组移位组,但随观察时间延长,术后8周起各项再生指标逐渐接近单组移位组和正常对照组,至12周,多数指标差异已无统计学意义. 结论 大鼠颈7神经根能提供足够再生纤维同时恢复两根受损神经功能.  相似文献   

9.
This prospective study was carried out to assess motor and sensory recovery after contralateral C7 root to median nerve neurotization in brachial plexus injuries with total root avulsions. The survey was carried out from 1993 to 1995 and the patients were followed up for at least 3 years. There were 96 male patients with ages ranging from 13 to 48 years. All had a unilateral brachial plexus injury with avulsion of all roots. This was confirmed by clinical assessment and exploration. The anterior part of the contralateral C7 root was used for neurotization via a reversed pedicular ulnar nerve graft and the proximal end of the graft was connected to the median nerve. Furthermore, phrenic nerve to suprascapular nerve and spinal accessory nerve (via a sural nerve graft) to musculocutaneous nerve neurotizations were also carried out to obtain shoulder abduction and elbow flexion. At the 3 year follow-up, most patients had encouraging recovery of sensory function in the hand but motor function of the forearm and hand muscles was rather poor. Acceptable motor function was found in only 50 to 60% of the patients who were younger than 18 years.  相似文献   

10.
From 2000 to 2006, 35 infants with total obstetric brachial plexus palsy underwent brachial plexus exploration and reconstruction. The mean age at surgery was 10.8 months (range 3–60 months), and the median age was 8 months. All infants were followed for at least 2.5 years (range 2.5–7.3 years) with an average follow‐up of 4.2 years. Assessment was performed using the Toronto Active Movement scale. Surgical procedures included neurolysis, neuroma excision and interposition nerve grafting and neurotization, using spinal accessory nerve, intercostals and contralateral C7 root. Satisfactory recovery was obtained in 37.1% of cases for shoulder abduction; 54.3% for shoulder external rotation; 75.1% for elbow flexion; 77.1% for elbow extension; 61.1% for finger flexion, 31.4% for wrist extension and 45.8% for fingers extension. Using the Raimondi score, 18 cases (53%) achieved a score of three or more (functional hand). The mean Raimondi score significantly improved postoperatively as compared to the preoperative mean: 2.73 versus 1, and showed negative significant correlation with age at surgery. In total, obstetrical brachial plexus palsy, early intervention is recommended. Intercostal neurotization is preferred for restoration of elbow flexion. Tendon transfer may be required to improve external rotation in selected cases. Apparently, intact C8 and T1 roots should be left alone if the patient has partial hand recovery, no Horner syndrome, and was operated early (3‐ or 4‐months old). Apparently, intact nonfunctioning lower roots with no response to electrical stimulation, especially in the presence of Horner syndrome, should be neurotized with the best available intraplexal donor. © 2010 Wiley‐Liss, Inc. Microsurgery, 2010.  相似文献   

11.

Background:

Brachial plexus injuries represent devastating injuries with a poor prognosis. Neurolysis, nerve repair, nerve grafts, nerve transfer, functioning free-muscle transfer and pedicle muscle transfer are the main surgical procedures for treating these injuries. Among these, nerve transfer or neurotization is mainly indicated in root avulsion injury.

Materials and Methods:

We analysed the results of various neurotization techniques in 20 patients (age group 20-41 years, mean 25.7 years) in terms of denervation time, recovery time and functional results. The inclusion criteria for the study included irreparable injuries to the upper roots of brachial plexus (C5, C6 and C7 roots in various combinations), surgery within 10 months of injury and a minimum follow-up period of 18 months. The average denervation period was 4.2 months. Shoulder functions were restored by transfer of spinal accessory nerve to suprascapular nerve (19 patients), and phrenic nerve to suprascapular nerve (1 patient). In 11 patients, axillary nerve was also neurotized using different donors - radial nerve branch to the long head triceps (7 patients), intercostal nerves (2 patients), and phrenic nerve with nerve graft (2 patients). Elbow flexion was restored by transfer of ulnar nerve motor fascicle to the motor branch of biceps (4 patients), both ulnar and median nerve motor fascicles to the biceps and brachialis motor nerves (10 patients), spinal accessory nerve to musculocutaneous nerve with an intervening sural nerve graft (1 patient), intercostal nerves (3rd, 4th and 5th) to musculocutaneous nerve (4 patients) and phrenic nerve to musculocutaneous nerve with an intervening graft (1 patient).

Results:

Motor and sensory recovery was assessed according to Medical Research Council (MRC) Scoring system. In shoulder abduction, five patients scored M4 and three patients M3+. Fair results were obtained in remaining 12 patients. The achieved abduction averaged 95 degrees (range, 50 - 170 degrees). Eight patients scored M4 power in elbow flexion and assessed as excellent results. Good results (M3+) were obtained in seven patients. Five patients had fair results (M2+ to M3).  相似文献   

12.
OBJECT: The aim of this retrospective study was to evaluate the restoration of shoulder function by means of suprascapular nerve neurotization in adult patients with proximal C-5 and C-6 lesions due to a severe brachial plexus traction injury. The primary goal of brachial plexus reconstructive surgery was to restore biceps muscle function and, secondarily, to reanimate shoulder function. METHODS: Suprascapular nerve neurotization was performed by grafting the C-5 nerve in 24 patients and by accessory or hypoglossal nerve transfer in 29 patients. Additional neurotization involving the axillary nerve was performed in 18 patients. Postoperative needle electromyography studies of the supraspinatus, infraspinatus, and deltoid muscles showed signs of reinnervation in most patients; however, active glenohumeral shoulder function recovery was poor. In nine (17%) of 53 patients supraspinatus muscle strength was Medical Research Council (MRC) Grade 3 or 4 and in four patients (8%) infraspinatus muscle power was MRC Grade 3 or 4. In 18 patients in whom deltoid muscle reinnervation was attempted, MRC Grade 3 or 4 function was demonstrated in two (11%). In the overall group, eight patients (15%) exhibited glenohumeral abduction with a mean of 44 +/- 17 degrees (standard deviation [SD]; median 45 degrees) and four patients (8%) exhibited glenohumeral exorotation with a mean of 48 +/- 24 degrees (SD; median 53 degrees). In only three patients (6%) were both functions regained. CONCLUSIONS: The reanimation of shoulder function in patients with proximal C-5 and C-6 brachial plexus traction injuries following suprascapular nerve neurotization is disappointingly low.  相似文献   

13.
Between 1993 and 1998, 32 male patients with brachial plexus injuries were surgically treated. Eighteen interfascicular grafting and 71 extraplexal neurotization procedures were performed separately or in combination. Donor nerves were the intercostals, spinal accessory, phrenic, contralateral C7, and cervical plexus, in order of frequency. Patients were followed for a minimum of 24 (average, 35) months. Biceps function was best following grafting the musculocutaneous nerve itself, or neurotization with the phrenic nerve (100 percent grade 4), followed by neurotization with the intercostals (89.5 percent grade 3 or more) and last, grafting the C5 root or upper trunk (grade 3 in one of three patients). Phrenic to suprascapular neurotization produced the best results of shoulder abduction (40 to 90 degrees), followed by combined neurotization of the spinal accessory to suprascapular and phrenic to axillary (20 to 90 degrees). Sensory recovery over the lateral forearm and palm varied from S2 to S3+, according to the method of reconstruction.  相似文献   

14.
Amr SM  Moharram AN 《Microsurgery》2005,25(2):126-146
Eleven brachial plexus lesions were repaired using end-to-side side-to-side grafting neurorrhaphy in root ruptures, in phrenic and spinal accessory nerve neurotizations, in contralateral C7 neurotization, and in neurotization using intact interplexus roots or cords. The main aim was to approximate donor and recipient nerves and promote regeneration through them. Another indication was to augment the recipient nerve, when it had been neurotized or grafted to donors of dubious integrity, when it was not completely denervated, when it had been neurotized to a nerve with a suboptimal number of fibers, when it had been neurotized to distant donors delaying its regeneration, and when it had been neurotized to a donor supplying many recipients. In interplexus neurotization, the main indication was to preserve the integrity of the interplexus donors, as they were not sacrificeable. The principles of end-to-side neurorrhaphy were followed. The epineurium was removed. Axonal sprouting was induced by longitudinally slitting and partially transecting the donor and recipient nerves, by increasing the contact area between both of them and the nerve grafts, and by embedding the grafts into the split predegenerated injured nerve segments. Agonistic donors were used for root ruptures and for phrenic and spinal accessory neurotization, but not for contralateral C7 or interplexus neurotization. Single-donor single-recipient neurotization was successfully followed in phrenic neurotization of the suprascapular (3 cases) and axillary (1 case) nerves, spinal accessory neurotization of the suprascapular nerve (1 case), and dorsal part of contralateral C7 neurotization of the axillary nerve (2 cases). Apart from this, recipient augmentation necessitated many donor to single-recipient neurotizations. This was successfully performed using phrenic-interplexus root to suprascapular transfers (2 cases), phrenic-contralateral C7 to suprascapular transfer (1 case), and spinal accessory-interplexus root to musculocutaneous transfer (1 case). Both recipient augmentation and increasing the contact area between grafts and recipients necessitated single or multiple donor to many recipient neurotizations. This was applied in root ruptures (3 cases), with results comparable to those obtained in classical nerve-grafting techniques. It was also applied in ventral C7 transfer to the lateral or medial cords (3 cases) with functional recovery occurring in the biceps and pronator teres muscles, but not in dorsal C7 transfer to the axillary and radial nerves (3 cases) with functional recovery occurring in the deltoid and triceps muscles, and in whole C7 transfer to C5, 6, 7, 8T1 roots with functional recovery occurring in the deltoid (M4), biceps (M4), pronator teres (M4), and triceps (M3) (3 cases), and less so in the flexor carpi ulnaris and FDP (M3) (1 case) and the extensor digitorum longus (M3) (1 case). Contralateral C7 transfer to the lateral and posterior cords (4 cases) was followed by cocontractions that took 1 year to improve and that involved the rotator cuff, deltoid, biceps, and pronator teres (all agonists). Functional recovery in the triceps muscle was less than in the above muscles. Contralateral C7 transfer to C5-7 (1 case) was followed by cocontractions that took 1 year to resolve and that occurred between the deltoid, biceps, and flexor digitorum profundus. Interplexus root neurotization was done only in conjunction with other neurotization techniques, and so its role is difficult to judge. Though the same applies to regenerated lateral cord transfer to the posterior cord (2 cases), the successful results obtained from medial cord neurotization to the axillary, musculocutaneous, and radial nerves (1 case), and from ulnar and median nerve neurotization to the radial nerve (1 case), show that neurotization at the interplexus cord level may play a role in brachial plexus regeneration and may even be used to neurotize nerves and muscles distal to the elbow. The timing of repair was within 6 months after injury, except for 2 cases. In the first case, contralateral C7 transfer was successfully performed more than 1 year after injury. The second case was an obstetric palsy operated upon at age 8. Deterioration in motor power of the donor muscles that improved in 6 months was observed in 2 cases of interplexus neurotization at the cord level, because of looping the sural nerve grafts tightly around the donor nerves. Deterioration in donor-muscle motor power as a consequence of end-to-side neurorrhaphy was noted in the obstetric palsy case, when the flexor carpi radialis (donor) became grade 3 instead of grade 4. This was associated with cocontractions between it and the extensors. It took nearly 1 year to improve.  相似文献   

15.
OBJECT: The authors present the long-term results of nerve grafting and neurotization procedures in their group of patients with brachial plexus injuries and compare the results of "classic" methods of nerve repair with those of end-to-side neurorrhaphy. METHODS: Between 1994 and 2006, direct repair (nerve grafting), neurotization, and end-to-side neurorrhaphy were performed in 168 patients, 95 of whom were followed up for at least 2 years after surgery. Successful results were achieved in 79% of cases after direct repair and in 56% of cases after end-to-end neurotization. The results of neurotization depended on the type of the donor nerve used. In patients who underwent neurotization of the axillary and the musculocutaneous nerves, the use of intraplexal nerves (motor branches of the brachial plexus) as donors of motor fibers was associated with a significantly higher success rate than the use of extraplexal nerves (81% compared with 49%, respectively, p = 0.003). Because of poor functional results of axillary nerve neurotization using extraplexal nerves (success rate 47.4%), the authors used end-to-side neurorrhaphy in 14 cases of incomplete avulsion. The success rate for end-to-side neurorrhaphy using the axillary nerve as a recipient was 64.3%, similar to that for neurotization using intraplexal nerves (68.4%) and better than that achieved using extraplexal nerves (47.4%, p = 0.19). CONCLUSIONS: End-to-side neurorrhaphy offers an advantage over classic neurotization in not requiring sacrifice of any of the surrounding nerves or the fascicles of the ulnar nerve. Typical synkinesis of muscle contraction innervated by the recipient nerve with contraction of muscles innervated by the donor was observed in patients after end-to-side neurorrhaphy.  相似文献   

16.
Aim: Brachial plexus lesions are commonly associated with complete or partial plegia of affected muscles even after microsurgical treatment. This study provides an overview of strategies and outcomes of 42 patients operated in a center for peripheral nerve surgery in Germany. Methods: Postsurgically, the patients were followed up and examined for strength in various muscle groups by applying a standard clinical classification (M0–M5). Sensitivity was estimated by differentiation between blunt and sharp touch. The patients were asked via questionnaire about their postsurgical daily life. Most of the patients received a grafting procedure using the sural nerve. Different microsurgical techniques were applied according to the underlying pathology: Intercostal nerve transfer, end‐to‐side coaptation, and direct grafting to different recipient nerves. Results: Only the 27 patients, who had a follow‐up time of at least 36 months, presented a measurable function in the affected extremity. Elbow‐flexion was restored in 15 cases. Triceps function was reconstructed in 7 patients of 27. One patient was able to move digits toward the palm without completing a full fist. Ten patients were able to flex the wrist and 4 could extend it. Conclusion: The results were estimated as acceptable for biceps reconstruction but poor for the other muscle groups. Some treatment strategies, which are presently under frequent discussion (contralateral C7‐transfer, banked autografts, Oberlin procedure), were not applied. However, some of these techniques may provide a key to improve the results. © 2008 Wiley‐Liss, Inc. Microsurgery, 2009.  相似文献   

17.
OBJECT: Brachial plexus injuries (BPIs) are often devastating events that lead to upper-extremity paralysis, rendering the limb a painful extraneous appendage. Fortunately, there are several nerve repair techniques that provide restoration of some function. Although there is general agreement in the medical community concerning which patients may benefit from surgical intervention, the actual repair technique for a given lesion is less clear. The authors sought to identify and better define areas of agreement and disagreement among experienced peripheral nerve surgeons as to the management of BPIs. METHODS: The authors developed a detailed survey in two parts: one part addressing general issues related to BPI and the other presenting four clinical cases. The survey was mailed to 126 experienced peripheral nerve physicians and 49 (39%) participated in the study. The respondents represent 22 different countries and multiple surgical subspecialties. They performed a mean of 33 brachial plexus reconstructions annually. Areas of significant disagreement included the timing and indications for surgical intervention in birth-related palsy, treatment of neuroma-in-continuity, the best transfers to achieve elbow flexion and shoulder abduction, the use of intra- or extraplexal donors for motor neurotization, and the use of distal or proximal coaptation during nerve transfer. CONCLUSIONS: Experienced peripheral nerve surgeons disagree in important ways as to the management of BPI. The decisions made by the various treating physicians underscore the many areas of disagreement regarding the treatment of BPI, including the diagnostic approach to defining the injury, timing of and indications for surgical intervention in birth-related palsy, the treatment of neuroma-in-continuity, the choice of nerve transfers to achieve elbow flexion and shoulder abduction, the use of intra- or extraplexal donors for neurotization, and the use of distal or proximal coaptation during nerve transfer.  相似文献   

18.
A strategy that uses the selective combination of neurotizations can yield a moderate degree of shoulder and elbow control. Even though some wrist and finger movement can occasionally be achieved by the current methods of neurotization,the results in terms of restoration of useful hand function are still far from satisfactory. The use of intraplexal and contralateral plexal neurotization combined with free-functioning muscle transfer and the better understanding of central-peripheral function integration may provide more purposeful hand function in the future.  相似文献   

19.
改良颈7神经移位术后支配肌功能恢复的实验研究   总被引:5,自引:1,他引:4  
目的 观察利用C7神经同时修复2组受损神经后的功能恢复情况。方法 建立大鼠C7改良移位术(同时修复2组受损神经)动物模型,并与传统单组移位术后神经再支配肌的功能进行比较。结果 术后早期(2~6周)C7改良移位组肌肉功能劣于同时间段单组移位组,但术后8周起逐渐接近单组移位和正常对照组。结论 大鼠C7改良移位术不仅能达到传统C7单组移位术的功能恢复效果,又能同时多恢复1组受损神经的功能。  相似文献   

20.
The purpose of this study was to observe whether the results of the median nerve fascicle transfer to the biceps are equivalent to the classical ulnar nerve fascicle transfer, in terms of elbow flexion strength and donor nerve morbidity. Twenty‐five consecutive patients were operated between March 2007 and July 2013. The patients were divided into two groups. In Group 1 (n = 8), the patients received an ulnar nerve fascicle transfer to the biceps motor branch. In Group 2 (n = 15), the patients received a median nerve fascicle transfer to the biceps motor branch. Two patients with follow‐up less than six months were excluded. Both groups were similar regarding age (P = 0.070), interval of injury (P = 0.185), and follow‐up period (P = 0.477). Elbow flexion against gravity was achieved in 7 of 8 (87.5%) patients in Group 1, versus 14 of 15 (93.3%) patients in Group 2 (P = 1.000). The level of injury (C5‐C6 or C5‐C7) did not affect anti‐gravity elbow flexion recovery in both the groups (P = 1.000). It was concluded that the median nerve fascicle transfer to the biceps is as good as the ulnar nerve fascicle transfer, even in C5‐C7 injuries. © 2014 Wiley Periodicals, Inc. Microsurgery 34:511–515, 2014.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号