首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 667 毫秒
1.
Hip fractures account for over one‐half the morbidity, mortality, and cost associated with osteoporosis. Fragility of the proximal femur is the result of rapid and unbalanced bone remodeling events that excavate more bone than they deposit, producing a porous, thinned, and fragile cortex. We hypothesized that the slowing of remodeling during treatment with denosumab allows refilling of the many cavities excavated before treatment now opposed by excavation of fewer new resorption cavities. The resulting net effect is a reduction in cortical porosity and an increase in proximal femur strength. Images were acquired at baseline and 36 months using multidetector CT in 28 women receiving denosumab and 22 women receiving placebo in a substudy of FREEDOM, a randomized, double‐blind, placebo‐controlled trial involving women with postmenopausal osteoporosis. Porosity was quantified using StrAx1.0 software. Strength was estimated using finite element analysis. At baseline, the higher the serum resorption marker, CTx, the greater the porosity of the total cortex (r = 0.34, p = 0.02), and the higher the porosity, the lower the hip strength (r = –0.31, p = 0.03). By 36 months, denosumab treatment reduced porosity of the total cortex by 3.6% relative to baseline. Reductions in porosity relative to placebo at 36 months were 5.3% in total cortex, 7.9% in compact‐appearing cortex, 5.6% in outer transitional zone, and 1.8% in inner transitional zone (all p < 0.01). The improvement in estimated hip integral strength of 7.9% from baseline (p < 0.0001) was associated with the reduction in total porosity (r = –0.41, p = 0.03). In summary, denosumab reduced cortical porosity of the proximal femoral shaft, resulting in increased mineralized matrix volume and improved strength, changes that may contribute to the reduction in hip and nonvertebral fractures reported with denosumab therapy. © 2016 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

2.
Hip fractures are the most serious of all fragility fractures in older people of both sexes. Trips, stumbles, and falls result in fractures of the femoral neck or trochanter, and the incidence of these two common fractures is increasing worldwide as populations age. Although clinical risk factors and chance are important in causation, the ability of a femur to resist fracture also depends on the size and spatial distribution of the bone, its intrinsic material properties, and the loads applied. Over the past two decades, clinical quantitative computed tomography (QCT) studies of living volunteers have provided insight into how the femur changes with advancing age to leave older men and women at increased risk of hip fractures. In this review, we focus on patterns of cortical bone loss associated with hip fracture, age‐related changes in cortical bone, and the effects of drugs used to treat osteoporosis. There are several methodologies available to measure cortical bone in vivo using QCT. Most techniques quantify bone density (g/cm3), mass (g), and thickness (mm) in selected, predefined or “traditional” regions of interest such as the “femoral neck” or “total hip” region. A recent alternative approach termed “computational anatomy,” uses parametric methods to identify systematic differences, before displaying statistically significant regions as color‐scaled maps of density, mass, or thickness on or within a representative femur model. This review will highlight discoveries made using both traditional and computational anatomy methods, focusing on cortical bone of the proximal femur. © 2014 American Society for Bone and Mineral Research.  相似文献   

3.
There is little knowledge about the spatial distribution differences in volumetric bone mineral density and cortical bone structure at the proximal femur between femoral neck fractures and trochanteric fractures. In this case‐control study, a total of 93 women with fragility hip fractures, 72 with femoral neck fractures (mean ± SD age: 70.6 ± 12.7 years) and 21 with trochanteric fractures (75.6 ± 9.3 years), and 50 control subjects (63.7 ± 7.0 years) were included for the comparisons. Differences in the spatial distributions of volumetric bone mineral density, cortical bone thickness, cortical volumetric bone mineral density, and volumetric bone mineral density in a layer adjacent to the endosteal surface were investigated using voxel‐based morphometry (VBM) and surface‐based statistical parametric mapping (SPM). We compared these spatial distributions between controls and both types of fracture, and between the two types of fracture. Using VBM, we found spatially heterogeneous volumetric bone mineral density differences between control subjects and subjects with hip fracture that varied by fracture type. Interestingly, femoral neck fracture subjects, but not subjects with trochanteric fracture, showed significantly lower volumetric bone mineral density in the superior aspect of the femoral neck compared with controls. Using surface‐based SPM, we found that compared with controls, both fracture types showed thinner cortices in regions in agreement with the type of fracture. Most outcomes of cortical and endocortical volumetric bone mineral density comparisons were consistent with VBM results. Our results suggest: 1) that the spatial distribution of trabecular volumetric bone mineral density might play a significant role in hip fracture; 2) that focal cortical bone thinning might be more relevant in femoral neck fractures; and 3) that areas of reduced cortical and endocortical volumetric bone mineral density might be more relevant for trochanteric fractures in Chinese women. © 2017 American Society for Bone and Mineral Research.  相似文献   

4.
Romosozumab is a monoclonal antibody that inhibits sclerostin and has been shown to reduce the risk of fractures within 12 months. In a phase II, randomized, placebo‐controlled clinical trial of treatment‐naïve postmenopausal women with low bone mass, romosozumab increased bone mineral density (BMD) at the hip and spine by the dual effect of increasing bone formation and decreasing bone resorption. In a substudy of that trial, which included placebo and teriparatide arms, here we investigated whether those observed increases in BMD also resulted in improvements in estimated strength, as assessed by finite element analysis. Participants received blinded romosozumab s.c. (210 mg monthly) or placebo, or open‐label teriparatide (20 μg daily) for 12 months. CT scans, obtained at the lumbar spine (n = 82) and proximal femur (n = 46) at baseline and month 12, were analyzed with finite element software (VirtuOst, O.N. Diagnostics) to estimate strength for a simulated compression overload for the spine (L1 vertebral body) and a sideways fall for the proximal femur, all blinded to treatment assignment. We found that, at month 12, vertebral strength increased more for romosozumab compared with both teriparatide (27.3% versus 18.5%; p = 0.005) and placebo (27.3% versus –3.9%; p < 0.0001); changes in femoral strength for romosozumab showed similar but smaller changes, increasing more with romosozumab versus teriparatide (3.6% versus –0.7%; p = 0.027), and trending higher versus placebo (3.6% versus ?0.1%; p = 0.059). Compartmental analysis revealed that the bone‐strengthening effects for romosozumab were associated with positive contributions from both the cortical and trabecular bone compartments at both the lumbar spine and hip. Taken together, these findings suggest that romosozumab may offer patients with osteoporosis a new bone‐forming therapeutic option that increases both vertebral and femoral strength within 12 months. © 2017 American Society for Bone and Mineral Research.  相似文献   

5.
Romosozumab is a bone‐forming agent with a dual effect of increasing bone formation and decreasing bone resorption. In FRActure study in postmenopausal woMen with ostEoporosis (FRAME), postmenopausal women with osteoporosis received romosozumab 210 mg s.c. or placebo once monthly for 12 months, followed by denosumab 60 mg s.c. once every 6 months in both groups for 12 months. One year of romosozumab increased spine and hip BMD by 13% and 7%, respectively, and reduced vertebral and clinical fractures with persistent fracture risk reduction upon transition to denosumab over 24 months. Here, we further characterize the BMD gains with romosozumab by quantifying the percentages of patients who responded at varying magnitudes; report the mean T‐score changes from baseline over the 2‐year study and contrast these results with the long‐term BMD gains seen with denosumab during Fracture REduction Evaluation of Denosumab in Osteoporosis every 6 Months (FREEDOM) and its Extension studies; and assess fracture incidence rates in year 2, when all patients received denosumab. Among 7180 patients (n = 3591 placebo, n = 3589 romosozumab), most romosozumab‐treated patients experienced ≥3% gains in BMD from baseline at month 12 (spine, 96%; hip, 78%) compared with placebo (spine, 22%; hip, 16%). For romosozumab patients, mean absolute T‐score increases at the spine and hip were 0.88 and 0.32, respectively, at 12 months (placebo: 0.03 and 0.01) and 1.11 and 0.45 at 24 months (placebo‐to‐denosumab: 0.38 and 0.17), with the 2‐year gains approximating the effect of 7 years of continuous denosumab administration. Patients receiving romosozumab versus placebo in year 1 had significantly fewer vertebral fractures in year 2 (81% relative reduction; p < 0.001), with fewer fractures consistently observed across other fracture categories. The data support the clinical benefit of rebuilding the skeletal foundation with romosozumab before transitioning to antiresorptive therapy. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals, Inc.  相似文献   

6.
In the randomized, placebo‐controlled FREEDOM study of women aged 60 to 90 years with postmenopausal osteoporosis, treatment with denosumab once every 6 months for 36 months significantly reduced hip and new vertebral fracture risk by 40% and 68%, respectively. To gain further insight into this efficacy, we performed a nonlinear finite element analysis (FEA) of hip and spine quantitative computed tomography (QCT) scans to estimate hip and spine strength in a subset of FREEDOM subjects (n = 48 placebo; n = 51 denosumab) at baseline, 12, 24, and 36 months. We found that, compared with baseline, the finite element estimates of hip strength increased from 12 months (5.3%; p < 0.0001) and through 36 months (8.6%; p < 0.0001) in the denosumab group. For the placebo group, hip strength did not change at 12 months and decreased at 36 months (–5.6%; p < 0.0001). Similar changes were observed at the spine: strength increased by 18.2% at 36 months for the denosumab group (p < 0.0001) and decreased by –4.2% for the placebo group (p = 0.002). At 36 months, hip and spine strength increased for the denosumab group compared with the placebo group by 14.3% (p < 0.0001) and 22.4% (p < 0.0001), respectively. Further analysis of the finite element models indicated that strength associated with the trabecular bone was lost at the hip and spine in the placebo group, whereas strength associated with both the trabecular and cortical bone improved in the denosumab group. In conclusion, treatment with denosumab increased hip and spine strength as estimated by FEA of QCT scans compared with both baseline and placebo owing to positive treatment effects in both the trabecular and cortical bone compartments. These findings provide insight into the mechanism by which denosumab reduces fracture risk for postmenopausal women with osteoporosis. © 2014 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research. This is an open access article under the terms of the Creative Commons Attribution–NonCommercial–NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.  相似文献   

7.
The bone mass benefits of antiresorbers in postmenopausal osteoporosis are limited by the rapid coupling of decreasing bone resorption with bone formation. Wnt signaling is involved in this coupling process during treatment with bisphosphonates, whereas its role during treatment with the anti‐receptor activator of NF‐κB ligand (RANKL) antibody denosumab is unknown. The study population includes patients participating in a placebo‐controlled trial lasting 36 months: 19 women were on placebo and 24 on subcutaneous 60 mg denosumab every 6 months. All measured parameters (serum C‐terminal telopeptide of type I collagen [sCTX], serum bone alkaline phosphatase [bAP], Dickkopf‐1 [DKK1], and sclerostin) remained unchanged during the observation period in the placebo group. sCTX and bAP were significantly suppressed by denosumab treatment over the entire follow‐up. Denosumab treatment was associated with significant (p < 0.05) increases (28% to 32%) in serum sclerostin over the entire study follow‐up. Serum DKK1 significantly decreased within the first 6 months with a trend for further continuous decreases, which reached statistical significance (p < 0.05) versus placebo group from the 18th month onward. The changes in DKK1 were significantly and positively related with the changes in sCTX and bAP and negatively with hip bone mineral density (BMD) changes. The changes in sclerostin were significantly and negatively related only with those of bAP. The changes in bone turnover markers associated with denosumab treatment of postmenopausal osteoporosis is associated with significant increase in sclerostin similar to those seen after long‐term treatment with bisphosphonates and significant decrease in DKK1. This latter observation might explain the continuous increase over 5 years in BMD observed during treatment of postmenopausal osteoporosis with denosumab. © 2012 American Society for Bone and Mineral Research.  相似文献   

8.
骨质疏松性髋部骨折作为老年骨质疏松症的严重并发症,是临床医生重点关注的问题。临床中多通过骨密度来评价脆性骨折的发生风险。而通过常规影像学检查获得的皮质厚度,在预测髋部骨折风险方面具有重要的辅助作用,特别是结合骨密度、股骨近端几何结构以及多种生化指标时,可明显提高骨折风险评估的准确率。而对于骨折的治疗,皮质厚度在术式、内固定选择以及术中强化内固定稳定性等方面的作用得到了广泛认识。患者术后恢复情况及治疗的效果评价同样可以通过皮质厚度来评估。本文对皮质厚度的研究和临床应用状况进行综述。  相似文献   

9.
Denosumab reduced bone resorption, increased bone mineral density (BMD), and decreased new vertebral, hip, and nonvertebral fracture risk in postmenopausal women with osteoporosis in the FREEDOM trial. Consistent with its mechanism of action, transiliac crest bone biopsies from subjects treated with denosumab for 1 to 3 years demonstrated reduced bone turnover that was reversible upon treatment cessation. Long‐term denosumab treatment for up to 6 years in the FREEDOM extension provides sustained bone turnover reduction and continued low fracture incidence. Here, we evaluate 5 years of denosumab treatment on bone remodeling at the tissue level. Transiliac crest bone biopsies were obtained from 41 subjects (13 cross‐over and 28 long‐term from the FREEDOM placebo and denosumab groups, respectively) at year 2 of the FREEDOM extension, representing up to 5 years of denosumab treatment. Demographics for this subset were comparable to the overall extension cohort. The mean (SD) duration from the last denosumab dose to the first dose of tetracycline was 5.7 (0.5) months. Qualitative bone histology assessed in all biopsy samples was unremarkable, showing normally mineralized lamellar bone. Structural indices, including trabecular bone volume, number, and surface, were similar between cross‐over and long‐term groups. Bone resorption was decreased as reflected by eroded surface in cross‐over and long‐term subjects. A total of 11 of 13 (85%) cross‐over subjects and 20 of 28 (71%) long‐term subjects had specimens with double or single tetracycline label in trabecular and/or cortical compartments; specimens from 5 cross‐over subjects and 10 long‐term subjects were evaluable for dynamic trabecular bone parameters. Dynamic remodeling indices were low for both groups and consistent with reduced bone turnover with denosumab. In conclusion, denosumab treatment through 5 years resulted in normal bone quality with reduced bone turnover. These observations are consistent with its mechanism of action and associated with continued BMD increases and low fracture incidence. © 2014 American Society for Bone and Mineral Research.  相似文献   

10.
目的:探讨股骨近端骨密度和股骨颈颈干角与髋部骨质疏松性骨折的相关性。方法收集在我院住院的髋部骨折患者100例和健康老年对照组100例,采用美国GE公司生产的LUNAR-Bravo双能X线骨密度仪及其配置的高级骨科专用分析测量软件,分析股骨近端骨密度和股骨颈颈干角与骨质疏松的相关性。结果髋部骨折组与对照组比较,髋部骨折组BMD较对照组有明显下降,股骨外侧皮质骨厚度明显减小,股骨颈干角( NSA)较对照组钝。结论髋部骨密度结合股骨颈颈干角变化特点可以提高对各型髋部骨质疏松骨折危险性的预测。  相似文献   

11.
ONO‐5334 (Ono Pharmaceutical Co., Ltd., Osaka, Japan) inhibits cathepsin K and has been shown to increase areal bone mineral density (BMD) at the hip and spine in postmenopausal osteoporosis. Quantitative computed tomography (QCT) allows the study of the cortical and trabecular bone separately and provides structural information such as cortical thickness. We investigated the impact of 2 years of cathepsin K inhibition on these different bone compartments with ONO‐5334. The clinical study was a randomized, double‐blind, placebo, and active controlled parallel group study conducted in 13 centers in six European countries. The original study period of 12 months was extended by another 12 months. A total of 147 subjects (age 55–75 years) of the QCT substudy who participated in the extension period were included. Subjects had been randomized into one of five treatment arms: placebo; ONO‐5334 50 mg twice per day (BID); ONO‐5334 100 mg once daily (QD); ONO‐5334 300 mg QD; or alendronate 70 mg once weekly (QW). QCT was obtained to evaluate bone structure at the lumbar spine and proximal femur. After 24 months ONO‐5334 showed statistically significant increases versus placebo for integral, trabecular, and cortical BMD at the spine and the hip (for ONO‐5334 300 mg QD, BMD increases were 10.5%, 7.1%, and 13.4% for integral, cortical, and trabecular BMD at the spine, respectively, and 6.2%, 3.4%, and 14.6% for integral, cortical, and trabecular total femur BMD, respectively). Changes in cortical and trabecular BMD in the spine and hip were similar for alendronate as for ONO‐5334. Integral volume did not demonstrate statistically significant changes under ONO‐5334 treatment, thus there was no evidence of periosteal apposition, neither at the spine nor at the femur. Cortical thickness changes were not statistically significant for ONO‐5334 in the spine and hip, with exception of a 2.1% increase after month 24 in the intertrochanter for ONO‐5334 300 mg QD. Over 2 years ONO‐5334 showed a statistically significant and persistent increase of trabecular and integral BMD at the spine and the hip. Cortical BMD also progressively increased but at a lower rate. Changes in bone size and of periosteal apposition were not observed. © 2014 American Society for Bone and Mineral Research.  相似文献   

12.
Regular exercisers have lower fracture risk, despite modest effects of exercise on bone mineral content (BMC). Exercise may produce localized cortical and trabecular bone changes that affect bone strength independently of BMC. We previously demonstrated that brief, daily unilateral hopping exercises increased femoral neck BMC in the exercise leg versus the control leg of older men. This study evaluated the effects of these exercises on cortical and trabecular bone and its 3D distribution across the proximal femur, using clinical CT. Fifty healthy men had pelvic CT scans before and after the exercise intervention. We used hip QCT analysis to quantify BMC in traditional regions of interest and estimate biomechanical variables. Cortical bone mapping localized cortical mass surface density and endocortical trabecular density changes across each proximal femur, which involved registration to a canonical proximal femur model. Following statistical parametric mapping, we visualized and quantified statistically significant changes of variables over time in both legs, and significant differences between legs. Thirty‐four men aged mean (SD) 70 (4) years exercised for 12‐months, attending 92% of prescribed sessions. In traditional regions of interest, cortical and trabecular BMC increased over time in both legs. Cortical BMC at the trochanter increased more in the exercise than control leg, whereas femoral neck buckling ratio declined more in the exercise than control leg. Across the entire proximal femur, cortical mass surface density increased significantly with exercise (2.7%; p < 0.001), with larger changes (> 6%) at anterior and posterior aspects of the femoral neck and anterior shaft. Endocortical trabecular density also increased (6.4%; p < 0.001), with localized changes of > 12% at the anterior femoral neck, trochanter, and inferior femoral head. Odd impact exercise increased cortical mass surface density and endocortical trabecular density, at regions that may be important to structural integrity. These exercise‐induced changes were localized rather than being evenly distributed across the proximal femur. © 2015 American Society for Bone and Mineral Research.  相似文献   

13.
Denosumab reduces the risk of new vertebral and nonvertebral fractures. Previous trials suggest that the efficacy of antiresorptives on fractures might differ by patients' characteristics, such as age, bone mineral density (BMD), and fracture history. In the FREEDOM study, 7808 women aged 60 to 90 years with osteoporosis were randomly assigned to receive subcutaneous injections of denosumab (60 mg) or placebo every 6 months for 3 years. New vertebral and nonvertebral fractures were radiologically confirmed. Subgroup analyses described in this article were prospectively planned before study unblinding to evaluate the effect of denosumab on new vertebral and nonvertebral fractures across various subgroups. Compared with placebo, denosumab decreased the risk of new vertebral fractures in the overall study population over 3 years. This effect did not significantly differ for any of the nine subgroups analyzed (p > 0.09 for all potential interactions). Denosumab also reduced all nonvertebral fractures by 20% in the full study cohort over 3 years. This risk reduction was statistically significant in women with a baseline femoral neck BMD T‐score ≤ ?2.5 but not in those with a T‐score > ?2.5; in those with a body mass index (BMI) < 25 kg/m2 but not ≥ 25 kg/m2; and in those without but not with a prevalent vertebral fracture. These differential treatment effects were not explained by differences in BMD responses to denosumab. Denosumab 60 mg administered every 6 months for 3 years in women with osteoporosis reduced the risk of new vertebral fractures to a similar degree in all subgroups. The effect of denosumab on nonvertebral fracture risk differed by femoral neck BMD, BMI, and prevalent vertebral fracture at baseline. © 2012 American Society for Bone and Mineral Research  相似文献   

14.
The cathepsin K inhibitor odanacatib (ODN), currently in phase 3 development for postmenopausal osteoporosis, has a novel mechanism of action that reduces bone resorption while maintaining bone formation. In phase 2 studies, odanacatib increased areal bone mineral density (aBMD) at the lumbar spine and total hip progressively over 5 years. To determine the effects of ODN on cortical and trabecular bone and estimate changes in bone strength, we conducted a randomized, double‐blind, placebo‐controlled trial, using both quantitative computed tomography (QCT) and high‐resolution peripheral (HR‐p)QCT. In previously published results, odanacatib was superior to placebo with respect to increases in trabecular volumetric BMD (vBMD) and estimated compressive strength at the spine, and integral and trabecular vBMD and estimated strength at the hip. Here, we report the results of HR‐pQCT assessment. A total of 214 postmenopausal women (mean age 64.0 ± 6.8 years and baseline lumbar spine T‐score –1.81 ± 0.83) were randomized to oral ODN 50 mg or placebo, weekly for 2 years. With ODN, significant increases from baseline in total vBMD occurred at the distal radius and tibia. Treatment differences from placebo were also significant (3.84% and 2.63% for radius and tibia, respectively). At both sites, significant differences from placebo were also found in trabecular vBMD, cortical vBMD, cortical thickness, cortical area, and strength (failure load) estimated using finite element analysis of HR‐pQCT scans (treatment differences at radius and tibia = 2.64% and 2.66%). At the distal radius, odanacatib significantly improved trabecular thickness and bone volume/total volume (BV/TV) versus placebo. At a more proximal radial site, odanacatib attenuated the increase in cortical porosity found with placebo (treatment difference = –7.7%, p = 0.066). At the distal tibia, odanacatib significantly improved trabecular number, separation, and BV/TV versus placebo. Safety and tolerability were similar between treatment groups. In conclusion, odanacatib increased cortical and trabecular density, cortical thickness, aspects of trabecular microarchitecture, and estimated strength at the distal radius and distal tibia compared with placebo. © 2014 American Society for Bone and Mineral Research  相似文献   

15.
Over 12 months, romosozumab increased bone formation and decreased bone resorption, resulting in increased bone mineral density (BMD) in postmenopausal women with low BMD (NCT00896532). Herein, we report the study extension evaluating 24 months of treatment with romosozumab, discontinuation of romosozumab, alendronate followed by romosozumab, and romosozumab followed by denosumab. Postmenopausal women aged 55 to 85 years with a lumbar spine (LS), total hip (TH), or femoral neck T‐score ≤–2.0 and ≥–3.5 were enrolled and randomly assigned to placebo, one of five romosozumab regimens (70 mg, 140 mg, 210 mg monthly [QM]; 140 mg Q3M; 210 mg Q3M) for 24 months, or open‐label alendronate for 12 months followed by romosozumab 140 mg QM for 12 months. Eligible participants were then rerandomized 1:1 within original treatment groups to placebo or denosumab 60 mg Q6M for an additional 12 months. Percentage change from baseline in BMD and bone turnover markers (BTMs) at months 24 and 36 and safety were evaluated. Of 364 participants initially randomized to romosozumab, placebo, or alendronate, 315 completed 24 months of treatment and 248 completed the extension. Romosozumab markedly increased LS and TH BMD through month 24, with largest gains observed with romosozumab 210 mg QM (LS = 15.1%; TH = 5.4%). Women receiving romosozumab who transitioned to denosumab continued to accrue BMD, whereas BMD returned toward pretreatment levels with placebo. With romosozumab 210 mg QM, bone formation marker P1NP initially increased after treatment initiation and gradually decreased to below baseline by month 12, remaining below baseline through month 24; bone resorption marker β‐CTX rapidly decreased after treatment, remaining below baseline through month 24. Transition to denosumab further decreased both BTMs, whereas after transition to placebo, P1NP returned to baseline and β‐CTX increased above baseline. Adverse events were balanced between treatment groups through month 36. These data suggest that treatment effects of romosozumab are reversible upon discontinuation and further augmented by denosumab. © 2018 The Authors Journal of Bone and Mineral Research published by Wiley Periodicals, Inc.  相似文献   

16.
Combined teriparatide and denosumab increases spine and hip bone mineral density more than either drug alone. The effect of this combination on skeletal microstructure and microarchitecture, however, is unknown. Because skeletal microstructure and microarchitecture are important components of skeletal integrity, we performed high‐resolution peripheral quantitative computed tomography (HR‐pQCT) assessments at the distal tibia and radius in postmenopausal osteoporotic women randomized to receive teriparatide 20 µg daily (n = 31), denosumab 60 mg every 6 months (n = 33), or both (n = 30) for 12 months. In the teriparatide group, total volumetric bone mineral density (vBMD) did not change at either anatomic site but increased in both other groups at both sites. The increase in vBMD at the tibia was greater in the combination group (3.1 ± 2.2%) than both the denosumab (2.2 ± 1.9%) and teriparatide groups (–0.3 ± 1.9%) (p < 0.02 for both comparisons). Cortical vBMD decreased by 1.6 ± 1.9% at the tibia and by 0.9 ± 2.8% at the radius in the teriparatide group, whereas it increased in both other groups at both sites. Tibia cortical vBMD increased more in the combination group (1.5 ± 1.5%) than both monotherapy groups (p < 0.04 for both comparisons). Cortical thickness did not change in the teriparatide group but increased in both other groups. The increase in cortical thickness at the tibia was greater in the combination group (5.4 ± 3.9%) than both monotherapy groups (p < 0.01 for both comparisons). In the teriparatide group, radial cortical porosity increased by 20.9 ± 37.6% and by 5.6 ± 9.9% at the tibia but did not change in the other two groups. Bone stiffness and failure load, as estimated by finite element analysis, did not change in the teriparatide group but increased in the other two groups at both sites. Together, these findings suggest that the use of denosumab and teriparatide in combination improves HR‐pQCT measures of bone quality more than either drug alone and may be of significant clinical benefit in the treatment of postmenopausal osteoporosis. © 2014 American Society for Bone and Mineral Research.  相似文献   

17.
Osteoporosis is a chronic disease and requires long‐term treatment with pharmacologic therapy to ensure sustained antifracture benefit. Denosumab reduced the risk for new vertebral, nonvertebral, and hip fractures over 36 months in the Fracture Reduction Evaluation of Denosumab in Osteoporosis Every 6 Months (FREEDOM) trial. Whereas discontinuation of denosumab has been associated with transient increases in bone remodeling and declines in bone mineral density (BMD), the effect on fracture risk during treatment cessation is not as well characterized. To understand the fracture incidence between treatment groups after cessation of investigational product, we evaluated subjects in FREEDOM who discontinued treatment after receiving two to five doses of denosumab or placebo, and continued study participation for ≥7 months. The off‐treatment observation period for each individual subject began 7 months after the last dose and lasted until the end of the study. This subgroup of 797 subjects (470 placebo, 327 denosumab), who were evaluable during the off‐treatment period, showed similar baseline characteristics for age, prevalent fracture, and lumbar spine and total hip BMD T‐scores. During treatment, more placebo‐treated subjects as compared with denosumab‐treated subjects sustained a fracture and had significant decreases in BMD. During the off‐treatment period (median 0.8 years per subject), 42% versus 28% of placebo‐ and denosumab‐treated subjects, respectively, initiated other therapy. Following discontinuation, similar percentages of subjects in both groups sustained a new fracture (9% placebo, 7% denosumab), resulting in a fracture rate per 100 subject‐years of 13.5 for placebo and 9.7 for denosumab (hazard ratio [HR] 0.82; 95% confidence interval [CI], 0.49–1.38), adjusted for age and total hip BMD T‐score at baseline. There was no apparent difference in fracture occurrence pattern between the groups during the off‐treatment period. In summary, there does not appear to be an excess in fracture risk after treatment cessation with denosumab compared with placebo during the off‐treatment period for up to 24 months. © 2013 American Society for Bone and Mineral Research.  相似文献   

18.
Discontinuation of denosumab is associated with a rapid return of bone mineral density (BMD) to baseline and an increased risk of multiple vertebral fractures. No subsequent treatment regimen has yet been established for preventing either loss of BMD or multiple vertebral fractures after denosumab discontinuation. The aim of this 8-year observational study was to investigate the effect of a single zoledronate infusion, administered 6 months after the last denosumab injection, on fracture occurrence and loss of BMD. We report on 120 women with postmenopausal osteoporosis who were treated with 60 mg denosumab every 6 months for 2 to 5 years (mean duration 3 years) and then 5 mg zoledronate 6 months after the last denosumab injection. All patients were evaluated clinically, by dual-energy X-ray absorptiometry (DXA) and vertebral fracture assessment (VFA), before the first and after the last denosumab injection and at 2.5 years (median) after denosumab discontinuation. During this off-treatment period, 3 vertebral fractures (1.1 per 100 patient-years) and 4 nonvertebral fractures (1.5 per 100 patient-years) occurred. No patients developed multiple vertebral fractures. Sixty-six percent (confidence interval [CI] 57% to 75%) of BMD gained with denosumab was retained at the lumbar spine and 49% (CI 31% to 67%) at the total hip. There was no significant difference in the decrease of BMD between patients with BMD gains of >9% versus <9% while treated with denosumab. Previous antiresorptive treatment or prevalent fractures had no impact on the decrease of BMD, and all bone loss occurred within the first 18 months after zoledronate infusion. In conclusion, a single infusion of 5 mg zoledronate after a 2- to 5-year denosumab treatment cycle retained more than half of the gained BMD and was not associated with multiple vertebral fractures, as reported in patients who discontinued denosumab without subsequent bisphosphonate treatment. © 2020 American Society for Bone and Mineral Research.  相似文献   

19.
Denosumab is a fully human monoclonal antibody against receptor activator of NF‐κB ligand (RANKL) that decreases osteoclast formation, function and survival, and is approved for the treatment of postmenopausal women with osteoporosis at increased or high risk for fracture, among other indications. During the pivotal 3‐year fracture trial FREEDOM, denosumab 60 mg subcutaneously every 6 months significantly reduced new vertebral (68%), hip (40%), and nonvertebral (20%) fractures; increased bone mineral density (BMD); and reduced bone turnover markers compared with placebo in postmenopausal women with osteoporosis. Questions have arisen regarding imbalances of certain low‐frequency adverse events (AEs) observed in FREEDOM, as well as the top 5 most frequent adverse reactions listed in the United States prescribing information (USPI; back pain, pain in extremity, musculoskeletal pain, hypercholesterolemia, and cystitis). We examined the incidences of these AEs in women who originally received placebo during FREEDOM and then received denosumab for up to 3 years during the FREEDOM Extension (Crossover Group). This provided a unique opportunity for comparison with the original 3‐year denosumab FREEDOM observations. We also examined the incidences of these AEs over 6 years of denosumab treatment (Long‐term Group; ie, comparing a second 3 years of treatment with findings in the first 3 years). There was no indication of increasing trends regarding the imbalances of either low‐frequency AEs or common AEs observed in FREEDOM. © 2017 American Society for Bone and Mineral Research.  相似文献   

20.
Romosozumab monoclonal antibody treatment works by binding sclerostin and causing rapid stimulation of bone formation while decreasing bone resorption. The location and local magnitude of vertebral bone accrual by romosozumab and how it compares to teriparatide remains to be investigated. Here we analyzed the data from a study collecting lumbar computed tomography (CT) spine scans at enrollment and 12 months post-treatment with romosozumab (210 mg sc monthly, n = 17), open-label daily teriparatide (20 μg sc, n = 19), or placebo (sc monthly, n = 20). For each of the 56 women, cortical thickness (Ct.Th), endocortical thickness (Ec.Th), cortical bone mineral density (Ct.bone mineral density (BMD)), cancellous BMD (Cn.BMD), and cortical mass surface density (CMSD) were measured across the first lumbar vertebral surface. In addition, color maps of the changes in the lumbar vertebrae structure were statistically analyzed and then visualized on the bone surface. At 12 months, romosozumab improved all parameters significantly over placebo and resulted in a mean vertebral Ct.Th increase of 10.3% versus 4.3% for teriparatide, an Ec.Th increase of 137.6% versus 47.5% for teriparatide, a Ct.BMD increase of 2.1% versus a −0.1% decrease for teriparatide, and a CMSD increase of 12.4% versus 3.8% for teriparatide. For all these measurements, the differences between romosozumab and teriparatide were statistically significant (p < 0.05). There was no significant difference between the romosozumab-associated Cn.BMD gains of 22.2% versus 18.1% for teriparatide, but both were significantly greater compared with the change in the placebo group (−4.6%, p < 0.05). Cortical maps showed the topographical locations of the increase in bone in fracture-prone areas of the vertebral shell, walls, and endplates. This study confirms widespread vertebral bone accrual with romosozumab or teriparatide treatment and provides new insights into how the rapid prevention of vertebral fractures is achieved in women with osteoporosis using these anabolic agents. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号