首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 2‐year, randomized, double‐blind, active‐controlled fracture endpoint VERO study included postmenopausal women with established osteoporosis, who had at least 2 moderate or 1 severe baseline vertebral fractures (VFx), and bone mineral density (BMD) T‐score ≤–1.5. Patients were treated with either s.c. daily teriparatide 20 μg or oral weekly risedronate 35 mg. As previously reported, the risk of new VFx and clinical fractures (a composite of clinical VFx and nonvertebral fragility fractures [NVFFx]) was statistically significantly reduced with teriparatide compared with risedronate. Here we present the prospectively planned subgroup analyses of fracture data across subgroups, which were predefined by the following baseline characteristics: age, number and severity of prevalent VFx, prevalent nonvertebral fractures (NVFx), glucocorticoid use, prior osteoporosis drugs, recent bisphosphonate use, clinical VFx in the year before study entry, and baseline BMD. Heterogeneity of the treatment effect on the primary endpoint (new VFx), and the four key secondary endpoints (including clinical fractures and NVFFx) were investigated by logistic and Cox proportional hazards regression models. A total of 1360 women were randomized and treated (680 per group). Mean age was 72.1 years, mean (SD) number of prevalent VFx was 2.7 (2.1), 55.4% had a BMD T‐score <–2.5, 36.5% had a recent clinical VFx, 28.3% had a prior major NVFx, 43.2% were osteoporosis drug‐naïve, 39.3% were recent bisphosphonate users, and 9.3% were taking glucocorticoids at a prednisone‐equivalent dose of >5 mg/d. For most fracture endpoints, the risk reduction of teriparatide versus risedronate did not significantly differ in any of the subgroups analyzed (treatment‐by‐subgroup interaction p > 0.1), with most subgroups mirroring results from the total study population. In conclusion, in postmenopausal women with severe osteoporosis, the antifracture efficacy of teriparatide compared with risedronate was consistent in a wide range of patient settings, including treatment‐naïve and previously treated patients. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.  相似文献   

2.
The bone mass benefits of antiresorbers in postmenopausal osteoporosis are limited by the rapid coupling of decreasing bone resorption with bone formation. Wnt signaling is involved in this coupling process during treatment with bisphosphonates, whereas its role during treatment with the anti‐receptor activator of NF‐κB ligand (RANKL) antibody denosumab is unknown. The study population includes patients participating in a placebo‐controlled trial lasting 36 months: 19 women were on placebo and 24 on subcutaneous 60 mg denosumab every 6 months. All measured parameters (serum C‐terminal telopeptide of type I collagen [sCTX], serum bone alkaline phosphatase [bAP], Dickkopf‐1 [DKK1], and sclerostin) remained unchanged during the observation period in the placebo group. sCTX and bAP were significantly suppressed by denosumab treatment over the entire follow‐up. Denosumab treatment was associated with significant (p < 0.05) increases (28% to 32%) in serum sclerostin over the entire study follow‐up. Serum DKK1 significantly decreased within the first 6 months with a trend for further continuous decreases, which reached statistical significance (p < 0.05) versus placebo group from the 18th month onward. The changes in DKK1 were significantly and positively related with the changes in sCTX and bAP and negatively with hip bone mineral density (BMD) changes. The changes in sclerostin were significantly and negatively related only with those of bAP. The changes in bone turnover markers associated with denosumab treatment of postmenopausal osteoporosis is associated with significant increase in sclerostin similar to those seen after long‐term treatment with bisphosphonates and significant decrease in DKK1. This latter observation might explain the continuous increase over 5 years in BMD observed during treatment of postmenopausal osteoporosis with denosumab. © 2012 American Society for Bone and Mineral Research.  相似文献   

3.
Denosumab has been shown to reduce the incidence of vertebral, nonvertebral, and hip fractures. The aim of the current study was to determine whether the antifracture efficacy of denosumab was dependent on baseline fracture probability assessed by FRAX. The primary data of the phase 3 FREEDOM study of the effects of denosumab in women with postmenopausal osteoporosis were used to compute country-specific probabilities using the FRAX tool (version 3.2). The outcome variable comprised all clinical osteoporotic fractures (including clinical vertebral fractures). Interactions between fracture probability and efficacy were explored by Poisson regression. At baseline, the median 10-year probability of a major osteoporotic fracture (with bone mineral density) was approximately 15% and for hip fracture was approximately 5% in both groups. In the simplest model adjusted for age and fracture probability, treatment with denosumab over 3 years was associated with a 32% (95% confidence interval [CI] 20% to 42%) decrease in clinical osteoporotic fractures. Denosumab reduced fracture risk to a greater extent in those at moderate to high risk. For example, at 10% probability, denosumab decreased fracture risk by 11% (p = 0.629), whereas at 30% probability (90th percentile of study population) the reduction was 50% (p = 0.001). The reduction in fracture was independent of prior fracture, parental history of hip fracture, or secondary causes of osteoporosis. A low body mass index (BMI) was associated with greater efficacy. Denosumab significantly decreased the risk of clinical osteoporotic fractures in postmenopausal women. Overall, the efficacy of denosumab was greater in those at moderate to high risk of fracture as assessed by FRAX.  相似文献   

4.
Many postmenopausal women treated with teriparatide for osteoporosis have previously received antiresorptive therapy. In women treated with alendronate (ALN) or raloxifene (RLX), adding versus switching to teriparatide produced different responses in areal bone mineral density (aBMD) and biochemistry; the effects of these approaches on volumetric BMD (vBMD) and bone strength are unknown. In this study, postmenopausal women with osteoporosis receiving ALN 70 mg/week (n = 91) or RLX 60 mg/day (n = 77) for ≥18 months were randomly assigned to add or switch to teriparatide 20 µg/day. Quantitative computed tomography scans were performed at baseline, 6 months, and 18 months to assess changes in vBMD; strength was estimated by nonlinear finite element analysis. A statistical plan specifying analyses was approved before assessments were completed. At the spine, median vBMD and strength increased from baseline in all groups (13.2% to 17.5%, p < 0.01); there were no significant differences between the Add and Switch groups. In the RLX stratum, hip vBMD and strength increased at 6 and 18 months in the Add group but only at 18 months in the Switch group (Strength, Month 18: 2.7% Add group, p < 0.01 and 3.4% Switch group, p < 0.05). In the ALN stratum, hip vBMD increased in the Add but not in the Switch group (0.9% versus –0.5% at 6 months and 2.2% versus 0.0% at 18 months, both p ≤ 0.004 group difference). At 18 months, hip strength increased in the Add group (2.7%, p < 0.01) but not in the Switch group (0%); however, the difference between groups was not significant (p = 0.076). Adding or switching to teriparatide conferred similar benefits on spine strength in postmenopausal women with osteoporosis pretreated with ALN or RLX. Increases in hip strength were more variable. In RLX‐treated women, strength increased more quickly in the Add group; in ALN‐treated women, a significant increase in strength compared with baseline was seen only in the Add group.  相似文献   

5.
Measurement of areal bone mineral density (aBMD) by dual‐energy x‐ray absorptiometry (DXA) has been shown to predict fracture risk. High‐resolution peripheral quantitative computed tomography (HR‐pQCT) yields additional information about volumetric BMD (vBMD), microarchitecture, and strength that may increase understanding of fracture susceptibility. Women with (n = 68) and without (n = 101) a history of postmenopausal fragility fracture had aBMD measured by DXA and trabecular and cortical vBMD and trabecular microarchitecture of the radius and tibia measured by HR‐pQCT. Finite‐element analysis (FEA) of HR‐pQCT scans was performed to estimate bone stiffness. DXA T‐scores were similar in women with and without fracture at the spine, hip, and one‐third radius but lower in patients with fracture at the ultradistal radius (p < .01). At the radius fracture, patients had lower total density, cortical thickness, trabecular density, number, thickness, higher trabecular separation and network heterogeneity (p < .0001 to .04). At the tibia, total, cortical, and trabecular density and cortical and trabecular thickness were lower in fracture patients (p < .0001 to .03). The differences between groups were greater at the radius than at the tibia for inner trabecular density, number, trabecular separation, and network heterogeneity (p < .01 to .05). Stiffness was reduced in fracture patients, more markedly at the radius (41% to 44%) than at the tibia (15% to 20%). Women with fractures had reduced vBMD, microarchitectural deterioration, and decreased strength. These differences were more prominent at the radius than at the tibia. HR‐pQCT and FEA measurements of peripheral sites are associated with fracture prevalence and may increase understanding of the role of microarchitectural deterioration in fracture susceptibility. © 2010 American Society for Bone and Mineral Research.  相似文献   

6.
Oral bisphosphonates reduce fracture risk in osteoporotic patients but are often associated with poor compliance, which may impair their antifracture effects. This post hoc analysis assessed the time to onset and persistence of the antifracture effect of zoledronic acid, a once-yearly bisphosphonate infusion, in women with osteoporosis. Data from 9355 women who were randomized in two placebo-controlled pivotal trials were included. Endpoints included reduction in the rate of any clinical fracture at 6, 12, 18, 24, and 36 months in the zoledronic acid group compared with placebo, and the year-by-year incidence of all clinical fractures over 3 years. Cox proportional hazards regression was used to determine the timing of onset of antifracture efficacy. A generalized estimating equation model was used to assess fracture reduction for the 3 consecutive years of treatment, thereby evaluating persistence of effect. Safety results from women in the two studies were collated. Zoledronic acid reduced the risk of all clinical fractures at 12 months (hazard ratio [HR] = 0.75, 95% confidence interval [CI] 0.61-0.92, p = 0.0050) with significant reductions maintained at all subsequent time points. Year-by-year analysis showed that zoledronic acid reduced the risk for all clinical fractures compared with the placebo group in each of the 3 years (year 1: odds ratio [OR] = 0.74, 95% CI 0.60-0.91, p = 0.0044; year 2: OR = 0.53, 95% CI 0.42-0.66, p < 0.0001; year 3: OR = 0.61, 95% CI 0.48-0.77, p < 0.0001). This antifracture effect was persistent over 3 years, with the reductions in years 2 and 3 slightly larger than in year 1 (p = 0.097). This analysis shows that zoledronic acid offered significant protection from clinical fractures as early as 12 months. When administered annually, its beneficial effects persisted for at least 3 years.  相似文献   

7.
Denosumab reduces bone resorption and vertebral and nonvertebral fracture risk. Denosumab discontinuation increases bone turnover markers 3 months after a scheduled dose is omitted, reaching above‐baseline levels by 6 months, and decreases bone mineral density (BMD) to baseline levels by 12 months. We analyzed the risk of new or worsening vertebral fractures, especially multiple vertebral fractures, in participants who discontinued denosumab during the FREEDOM study or its Extension. Participants received ≥2 doses of denosumab or placebo Q6M, discontinued treatment, and stayed in the study ≥7 months after the last dose. Of 1001 participants who discontinued denosumab during FREEDOM or Extension, the vertebral fracture rate increased from 1.2 per 100 participant‐years during the on‐treatment period to 7.1, similar to participants who received and then discontinued placebo (n = 470; 8.5 per 100 participant‐years). Among participants with ≥1 off‐treatment vertebral fracture, the proportion with multiple (>1) was larger among those who discontinued denosumab (60.7%) than placebo (38.7%; p = 0.049), corresponding to a 3.4% and 2.2% risk of multiple vertebral fractures, respectively. The odds (95% confidence interval) of developing multiple vertebral fractures after stopping denosumab were 3.9 (2.1–7. 2) times higher in those with prior vertebral fractures, sustained before or during treatment, than those without, and 1.6 (1.3–1.9) times higher with each additional year of off‐treatment follow‐up; among participants with available off‐treatment total hip (TH) BMD measurements, the odds were 1.2 (1.1–1.3) times higher per 1% annualized TH BMD loss. The rates (per 100 participant‐years) of nonvertebral fractures during the off‐treatment period were similar (2.8, denosumab; 3.8, placebo). The vertebral fracture rate increased upon denosumab discontinuation to the level observed in untreated participants. A majority of participants who sustained a vertebral fracture after discontinuing denosumab had multiple vertebral fractures, with greatest risk in participants with a prior vertebral fracture. Therefore, patients who discontinue denosumab should rapidly transition to an alternative antiresorptive treatment. Clinicaltrails.gov : NCT00089791 (FREEDOM) and NCT00523341 (Extension). © 2017 American Society for Bone and Mineral Research.  相似文献   

8.
Osteoporosis is a chronic disease and requires long‐term treatment with pharmacologic therapy to ensure sustained antifracture benefit. Denosumab reduced the risk for new vertebral, nonvertebral, and hip fractures over 36 months in the Fracture Reduction Evaluation of Denosumab in Osteoporosis Every 6 Months (FREEDOM) trial. Whereas discontinuation of denosumab has been associated with transient increases in bone remodeling and declines in bone mineral density (BMD), the effect on fracture risk during treatment cessation is not as well characterized. To understand the fracture incidence between treatment groups after cessation of investigational product, we evaluated subjects in FREEDOM who discontinued treatment after receiving two to five doses of denosumab or placebo, and continued study participation for ≥7 months. The off‐treatment observation period for each individual subject began 7 months after the last dose and lasted until the end of the study. This subgroup of 797 subjects (470 placebo, 327 denosumab), who were evaluable during the off‐treatment period, showed similar baseline characteristics for age, prevalent fracture, and lumbar spine and total hip BMD T‐scores. During treatment, more placebo‐treated subjects as compared with denosumab‐treated subjects sustained a fracture and had significant decreases in BMD. During the off‐treatment period (median 0.8 years per subject), 42% versus 28% of placebo‐ and denosumab‐treated subjects, respectively, initiated other therapy. Following discontinuation, similar percentages of subjects in both groups sustained a new fracture (9% placebo, 7% denosumab), resulting in a fracture rate per 100 subject‐years of 13.5 for placebo and 9.7 for denosumab (hazard ratio [HR] 0.82; 95% confidence interval [CI], 0.49–1.38), adjusted for age and total hip BMD T‐score at baseline. There was no apparent difference in fracture occurrence pattern between the groups during the off‐treatment period. In summary, there does not appear to be an excess in fracture risk after treatment cessation with denosumab compared with placebo during the off‐treatment period for up to 24 months. © 2013 American Society for Bone and Mineral Research.  相似文献   

9.
Cessation of denosumab treatment is associated with increases in bone turnover above baseline values and rapid bone loss. We investigated the efficacy of zoledronate to prevent this bone loss in women with postmenopausal osteoporosis who were treated with denosumab (mean duration 2.2 years) and discontinued treatment after achieving osteopenia. Women were randomized to receive a single 5-mg infusion of zoledronate (ZOL) (n = 27) or two additional 60-mg injections of denosumab (Dmab) (n = 30). Both groups were followed for a total period of 24 months. At 24 months lumbar spine–bone mineral density (LS-BMD) was not different from baseline in the ZOL group, but decreased in the Dmab group by (mean ± SD) 4.82% ± 0.7% (p < 0.001) from the 12-month value; the difference in BMD changes between the two groups, the primary endpoint of the study, was statistically significant (p = 0.025). Results of femoral neck (FN)-BMD changes were similar. ZOL infusion was followed by small but significant increases in serum procollagen type 1 N-terminal propeptide (P1NP) and C-terminal telopeptide of type 1 collagen (CTX) during the first year and stabilization thereafter. In the Dmab group, bone turnover marker values did not change during the first 12 months but increased significantly at 15 months and in the majority of women these remained elevated at 24 months. Neither baseline nor 12-month bone turnover marker values were associated with BMD changes in either group of women. In the Dmab group, three patients sustained vertebral fractures (two patients multiple clinical, one patient morphometric) whereas one patient in the ZOL group sustained clinical vertebral fractures 12 months after the infusion. In conclusion, a single intravenous infusion of ZOL given 6 months after the last Dmab injection prevents bone loss for at least 2 years independently of the rate of bone turnover. Follow-up is recommended, because in a few patients ZOL treatment might not have the expected effect at 2 years. © 2019 American Society for Bone and Mineral Research.  相似文献   

10.
This randomized, double‐blind, placebo‐controlled, dose‐response late phase 2 study evaluated the efficacy and safety of bazedoxifene in postmenopausal Japanese women 85 years of age or younger with osteoporosis. Eligible subjects received daily treatment with oral doses of bazedoxifene 20 or 40 mg or placebo for 2 years. Efficacy assessments included bone mineral density (BMD) at the lumbar spine and other skeletal sites, bone turnover marker levels, lipid parameters, and incidence of new fractures. Of 429 randomized subjects, 387 were evaluable for efficacy, and 423 were included in the safety analyses (mean age, 64 years). At 2 years, the mean percent changes from baseline in lumbar spine BMD were significantly greater with bazedoxifene 20 and 40 mg (2.43% and 2.74%, respectively) than with placebo (?0.65%, p < .001 for both). Both bazedoxifene doses significantly improved BMD at the total hip, femoral neck, and greater trochanter compared with placebo (p < .001 for all). Decreases in bone turnover markers were observed with bazedoxifene 20 and 40 mg as early as 12 weeks (p < .05 for all) and were sustained throughout the study. Total and low‐density lipoprotein cholesterol levels were significantly decreased from baseline with both bazedoxifene doses compared with placebo (p < .05 for all). Incidences of new vertebral and nonvertebral fractures were similar among the bazedoxifene and placebo groups. Overall, the incidence of adverse events with bazedoxifene 20 and 40 mg was similar to that with placebo. Bazedoxifene significantly improved BMD, reduced bone turnover, and was well tolerated in postmenopausal Japanese women with osteoporosis. © 2011 American Society for Bone and Mineral Research.  相似文献   

11.
Denosumab, a fully human monoclonal antibody to RANKL, decreases bone remodeling, increases bone density, and reduces fracture risk. This study evaluates the time course and determinants of bone turnover marker (BTM) response during denosumab treatment, the percentage of denosumab‐treated women with BTMs below the premenopausal reference interval, and the correlations between changes in BTMs and bone mineral density (BMD). The BTM substudy of the Fracture REduction Evaulation of Denosumab in Osteoporosis every 6 Months (FREEDOM) Trial included 160 women randomized to subcutaneous denosumab (60 mg) or placebo injections every 6 months for 3 years. Biochemical markers of bone resorption (serum C‐telopeptide of type I collagen [CTX] and tartrate‐resistant acid phosphatise [TRACP‐5b]) and bone formation (serum procollagen type I N‐terminal propeptide [PINP] and bone alkaline phosphatase [BALP]) were measured at baseline and at 1, 6, 12, 24, and 36 months. Decreases in CTX were more rapid and greater than decreases in PINP and BALP. One month after injection, CTX levels in all denosumab‐treated subjects decreased to levels below the premenopausal reference interval. CTX values at the end of the dosing period were influenced by baseline CTX values and the dosing interval. The percentage of subjects with CTX below the premenopausal reference interval before each subsequent injection decreased from 79% to 51% during the study. CTX and PINP remained below the premenopausal reference interval at all time points in 46% and 31% denosumab‐treated subjects, respectively. With denosumab, but not placebo, there were significant correlations between CTX reduction and BMD increase (r = ?0.24 to ?0.44). The BTM response pattern with denosumab is unique and should be appreciated by physicians to monitor this treatment effectively. © 2011 American Society for Bone and Mineral Research.  相似文献   

12.
Women with osteoporosis treated for 36 months with twice‐yearly injections of denosumab sustained fewer hip fractures compared with placebo. Treatment might improve femoral bone at locations where fractures typically occur. To test this hypothesis, we used 3D cortical bone mapping of postmenopausal women with osteoporosis to investigate the timing and precise location of denosumab versus placebo effects in the hips. We analyzed clinical computed tomography scans from 80 female participants in FREEDOM, a randomized trial, wherein half of the study participants received subcutaneous denosumab 60 mg twice yearly and the others received placebo. Cortical 3D bone thickness maps of both hips were created from scans at baseline, 12, 24, and 36 months. Cortical mass surface density maps were also created for each visit. After registration of each bone to an average femur shape model followed by statistical parametric mapping, we visualized and quantified statistically significant treatment effects. The technique allowed us to pinpoint systematic differences between denosumab and control and to display the results on a 3D average femur model. Denosumab treatment led to an increase in femoral cortical mass surface density and thickness, already evident by the third injection (12 months). Overall, treatment with denosumab increased femoral cortical mass surface density by 5.4% over 3 years. One‐third of the increase came from increasing cortical density, and two‐thirds from increasing cortical thickness, relative to placebo. After 36 months, cortical mass surface density and thickness had increased by up to 12% at key locations such as the lateral femoral trochanter versus placebo. Most of the femoral cortex displayed a statistically significant relative difference by 36 months. Osteoporotic cortical bone responds rapidly to denosumab therapy, particularly in the hip trochanteric region. This mechanism may be involved in the robust decrease in hip fractures observed in denosumab‐treated women at increased risk of fracture. © 2014 American Society for Bone and Mineral Research.  相似文献   

13.
The purposes of this study were to assess direct medical resource utilization related to the treatment of nonvertebral osteoporotic fractures within 1 year postfracture and to evaluate whether age impacts resource utilization. A previously‐validated algorithm for physician claims databases identified 15,327 women aged 50 years or older with incident fracture at nonvertebral osteoporotic sites between January 1, 2004 and December 31, 2005. Administrative databases of the health services available to all residents in Quebec served to study fracture‐related health resource utilization in the year after fracture. Data were linked by a unique personal identifier, creating a longitudinal cohort of all fracture cases for health resource utilization. The proportions of fractures treated by open reduction, closed reduction, immobilization or follow‐up by an orthopedic surgeon (OS) were evaluated. The mean number of claims for consultation with an OS or other clinicians in inpatient and outpatient visits, the hospitalization rate and length of stay (LOS) were assessed. Hip/femur fractures represented the highest rate of resource utilization because the majority of them required surgery (91.1%) and hospitalization (94.5%) with a mean (median) LOS of 39.2 (31) days. However, other nonvertebral fracture types needed significant clinical care related to surgery (27.9%), follow‐up consultation with an OS (77.6%), and hospitalization (27.3% of total LOS). Even pelvic fractures, which often do not require surgical treatment, commanded high resource utilization due to the high hospitalization rate (67.4%) with mean (median) LOS of 34.2 (26) days. Moreover, age was an important determinant of health resource utilization, being associated with an increased number of visits to other physicians, hospitalization, and length of hospitalization (LOS), admissions to long term care (LTC), and death. Osteoporosis‐related fractures accounted for substantial healthcare resource utilization. With an aging population and increased prevalence of fractures, strategies for osteoporosis management need to be introduced to reduce the healthcare burden. © 2013 American Society for Bone and Mineral Research  相似文献   

14.
To identify the susceptibility genes for osteoporotic fracture in postmenopausal Chinese women, a two‐stage case‐control association study using joint analysis was conducted in 1046 patients with nontraumatic vertebra, hip, or distal radius fractures and 2303 healthy controls. First, 113 single‐nucleotide polymorphisms (SNPs) in 16 potential osteoporosis candidate genes reported in recent genomewide association studies, meta‐analyses studies, large‐scale association studies, and functional studies were genotyped in a small‐sample‐size subgroup consisting of 541 patients with osteoporotic fractures and 554 healthy controls. Variants and haplotypes in SPTBN1, TNFRSF11B, CNR2, LRP4, and ESR1 that have been identified as being associated with osteoporotic fractures were further reanalyzed in the entire case‐control group. We identified one SNP in TNFRSF11B (rs3102734), three SNPs in ESR1 (rs9397448, rs2234693, and rs1643821), two SNPs in LRP4 (rs17790156 and rs898604), and four SNPs in SPTBN1 (rs2971886, rs2941583, rs2941584, and rs12475342) were associated with all of the broadly defined osteoporotic fractures. The most significant polymorphism was rs3102734, with increased risk of osteoporotic fractures (odds ratio, 1.35; 95% confidence interval [CI], 1.17–1.55, Bonferroni p = 2.6 × 10?4). Furthermore, rs3102734, rs2941584, rs12475342, rs9397448, rs2234693, and rs898604 exhibited significant allelic, genotypic, and/or haplotypic associations with vertebral fractures. SNPs rs12475342, rs9397448, and rs2234693 showed significant genotypic associations with hip fractures, whereas rs3102734, rs2073617, rs1643821, rs12475342, and rs2971886 exhibited significant genotypic and/or haplotypic associations with distal radius fractures. Accordingly, we suggest that in addition to the clinical risk factors, the variants in TNFRSF11B, SPTBN1, ESR1, and LRP4 are susceptibility genetic loci for osteoporotic fracture in postmenopausal Chinese women. © 2012 American Society for Bone and Mineral Research © 2012 American Society for Bone and Mineral Research  相似文献   

15.
Bazedoxifene is a novel selective estrogen receptor modulator (SERM) for the prevention and treatment of osteoporosis. In addition to the therapeutic value of a new agent, evaluation of the cost‐effectiveness compared with relevant alternative treatment(s) is an important consideration to facilitate healthcare decision making. This study evaluated the cost‐effectiveness of bazedoxifene compared with raloxifene for the treatment of postmenopausal women with osteoporosis. The cost‐effectiveness of treatment for 3 years with bazedoxifene was compared with raloxifene using an updated version of a previously validated Markov microsimulation model. Analyses were conducted from a Belgian healthcare payer perspective and, the base‐case population was women (aged 70 years) with bone mineral density T‐score ≤ ?2.5. The effects of bazedoxifene and raloxifene on fracture risk were derived from the 3‐year results of a randomized, double‐blind, placebo‐controlled and active‐controlled study, including postmenopausal women with osteoporosis. The cost‐effectiveness analysis based on efficacy data from the overall clinical trial indicated that bazedoxifene and raloxifene were equally cost‐effective. When the results were examined based on the subgroup analysis of women at higher risk of fractures, bazedoxifene was dominant (lower cost for higher effectiveness) compared with raloxifene in most of the simulations. Sensitivity analyses confirmed the robustness of the results, which were largely independent of starting age of treatment, fracture risk, cost, and disutility. In addition, when the cost of raloxifene was reduced by one‐half or when incorporating the raloxifene effects on reducing breast cancer, bazedoxifene remained cost‐effective, at a threshold of €35,000 per quality‐adjusted life‐years gained, in 85% and 68% of the simulations, respectively. Under the assumption of improved antifracture efficacy of bazedoxifene over raloxifene in women with high risk of fractures, this study suggests that bazedoxifene can be considered cost‐effective, and even dominant, when compared with raloxifene in the treatment of postmenopausal osteoporotic women. © 2013 American Society for Bone and Mineral Research.  相似文献   

16.
The 3-year FREEDOM trial assessed the efficacy and safety of 60 mg denosumab every 6 months for the treatment of postmenopausal women with osteoporosis. Participants who completed the FREEDOM trial were eligible to enter an extension to continue the evaluation of denosumab efficacy and safety for up to 10 years. For the extension results presented here, women from the FREEDOM denosumab group had 2 more years of denosumab treatment (long-term group) and those from the FREEDOM placebo group had 2 years of denosumab exposure (cross-over group). We report results for bone turnover markers (BTMs), bone mineral density (BMD), fracture rates, and safety. A total of 4550 women enrolled in the extension (2343 long-term; 2207 cross-over). Reductions in BTMs were maintained (long-term group) or occurred rapidly (cross-over group) following denosumab administration. In the long-term group, lumbar spine and total hip BMD increased further, resulting in 5-year gains of 13.7% and 7.0%, respectively. In the cross-over group, BMD increased at the lumbar spine (7.7%) and total hip (4.0%) during the 2-year denosumab treatment. Yearly fracture incidences for both groups were below rates observed in the FREEDOM placebo group and below rates projected for a "virtual untreated twin" cohort. Adverse events did not increase with long-term denosumab administration. Two adverse events in the cross-over group were adjudicated as consistent with osteonecrosis of the jaw. Five-year denosumab treatment of women with postmenopausal osteoporosis maintained BTM reduction and increased BMD, and was associated with low fracture rates and a favorable risk/benefit profile.  相似文献   

17.
Arzoxifene is a selective estrogen receptor modulator (SERM) that has been shown to be more potent in preclinical testing than currently available agents. Its effects on clinical outcomes are not known. In a randomized, blinded trial, women aged 60 to 85 years with osteoporosis, defined as a femoral neck or lumbar spine bone mineral density T‐score of ?2.5 or less or a vertebral fracture, and women with low bone mass, defined as a bone density T‐score of ?1.0 or less and above ?2.5, were assigned to arzoxifene 20 mg or placebo daily. The primary endpoints were new vertebral fracture in those with osteoporosis and invasive breast cancer in the overall population. After 3 years, the cumulative incidence of vertebral fractures in patients with osteoporosis was 2.3% lower in the arzoxifene group than in the placebo group, a 41% relative risk reduction [95% confidence interval (CI) 0.45–0.77, p < .001]. In the overall population, the cumulative incidence of invasive breast cancer over 4 years was reduced by 1.3%, with a 56% relative reduction in risk (hazard ratio = 0.44, 95% CI 0.26–0.76, p < .001); there was no significant decrease in nonvertebral fracture risk. Arzoxifene increased the cumulative incidence of venous thromboembolic events by 0.7%, with a 2.3‐fold relative increase (95% CI 1.5–3.7). Like other SERMs, arzoxifene decreased vertebral fractures and invasive breast cancer while the risk of venous thromboembolic events increased. © 2011 American Society for Bone and Mineral Research.  相似文献   

18.
Over 12 months, romosozumab increased bone formation and decreased bone resorption, resulting in increased bone mineral density (BMD) in postmenopausal women with low BMD (NCT00896532). Herein, we report the study extension evaluating 24 months of treatment with romosozumab, discontinuation of romosozumab, alendronate followed by romosozumab, and romosozumab followed by denosumab. Postmenopausal women aged 55 to 85 years with a lumbar spine (LS), total hip (TH), or femoral neck T‐score ≤–2.0 and ≥–3.5 were enrolled and randomly assigned to placebo, one of five romosozumab regimens (70 mg, 140 mg, 210 mg monthly [QM]; 140 mg Q3M; 210 mg Q3M) for 24 months, or open‐label alendronate for 12 months followed by romosozumab 140 mg QM for 12 months. Eligible participants were then rerandomized 1:1 within original treatment groups to placebo or denosumab 60 mg Q6M for an additional 12 months. Percentage change from baseline in BMD and bone turnover markers (BTMs) at months 24 and 36 and safety were evaluated. Of 364 participants initially randomized to romosozumab, placebo, or alendronate, 315 completed 24 months of treatment and 248 completed the extension. Romosozumab markedly increased LS and TH BMD through month 24, with largest gains observed with romosozumab 210 mg QM (LS = 15.1%; TH = 5.4%). Women receiving romosozumab who transitioned to denosumab continued to accrue BMD, whereas BMD returned toward pretreatment levels with placebo. With romosozumab 210 mg QM, bone formation marker P1NP initially increased after treatment initiation and gradually decreased to below baseline by month 12, remaining below baseline through month 24; bone resorption marker β‐CTX rapidly decreased after treatment, remaining below baseline through month 24. Transition to denosumab further decreased both BTMs, whereas after transition to placebo, P1NP returned to baseline and β‐CTX increased above baseline. Adverse events were balanced between treatment groups through month 36. These data suggest that treatment effects of romosozumab are reversible upon discontinuation and further augmented by denosumab. © 2018 The Authors Journal of Bone and Mineral Research published by Wiley Periodicals, Inc.  相似文献   

19.
This study compared microscopic magnetic resonance imaging (μMRI) parameters of trabecular microarchitecture between postmenopausal women with and without fracture who have normal or osteopenic bone mineral density (BMD) on dual-energy X-ray absorptiometry (DXA). It included 36 postmenopausal white women 50 years of age and older with normal or osteopenic BMD (T-scores better than -2.5 at the lumbar spine, proximal femur, and one-third radius on DXA). Eighteen women had a history of low-energy fracture, whereas 18 women had no history of fracture and served as an age, race, and ultradistal radius BMD-matched control group. A three-dimensional fast large-angle spin-echo (FLASE) sequence with 137 μm × 137 μm × 400 μm resolution was performed through the nondominant wrist of all 36 women using the same 1.5T scanner. The high-resolution images were used to measure trabecular bone volume fraction, trabecular thickness, surface-to-curve ratio, and erosion index. Wilcoxon signed-rank tests were used to compare differences in BMD and μMRI parameters between postmenopausal women with and without fracture. Post-menopausal women with fracture had significantly lower (p < 0.05) trabecular bone volume fraction and surface-to-curve ratio and significantly higher (p < 0.05) erosion index than postmenopausal women without fracture. There was no significant difference between postmenopausal women with and without fracture in trabecular thickness (p = 0.80) and BMD of the spine (p = 0.21), proximal femur (p = 0.19), one-third radius (p = 0.47), and ultradistal radius (p = 0.90). Postmenopausal women with normal or osteopenic BMD who had a history of low-energy fracture had significantly different (p < 0.05) μMRI parameters than an age, race, and ultradistal radius BMD-matched control group of postmenopausal women with no history of fracture. Our study suggests that μMRI can be used to identify individuals without a DXA-based diagnosis of osteoporosis who have impaired trabecular microarchitecture and thus a heretofore-unappreciated elevated fracture risk.  相似文献   

20.
The primary goal of this study was to assess peripheral bone microarchitecture and strength in postmenopausal women with type 2 diabetes with fragility fractures (DMFx) and to compare them with postmenopausal women with type 2 diabetics without fractures (DM). Secondary goals were to assess differences in nondiabetic postmenopausal women with fragility fractures (Fx) and nondiabetic postmenopausal women without fragility fractures (Co), and in DM and Co women. Eighty women (mean age 61.3 ± 5.7 years) were recruited into these four groups (DMFx, DM, Fx, and Co; n = 20 per group). Participants underwent dual‐energy X‐ray absorptiometry (DXA) and high‐resolution peripheral quantitative computed tomography (HR‐pQCT) of the ultradistal and distal radius and tibia. In the HR‐pQCT images volumetric bone mineral density and cortical and trabecular structure measures, including cortical porosity, were calculated. Bone strength was estimated using micro–finite element analysis (µFEA). Differential strength estimates were obtained with and without open cortical pores. At the ultradistal and distal tibia, DMFx had greater intracortical pore volume (+52.6%, p = 0.009; +95.4%, p = 0.020), relative porosity (+58.1%, p = 0.005; +87.9%, p = 0.011) and endocortical bone surface (+10.9%, p = 0.031; +11.5%, p = 0.019) than DM. At the distal radius DMFx had 4.7‐fold greater relative porosity (p < 0.0001) than DM. At the ultradistal radius, intracortical pore volume was significantly higher in DMFx than DM (+67.8%, p = 0.018). DMFx also displayed larger trabecular heterogeneity (ultradistal radius: +36.8%, p = 0.035), and lower total and cortical BMD (ultradistal tibia: ?12.6%, p = 0.031; ?6.8%, p = 0.011) than DM. DMFx exhibited significantly higher pore‐related deficits in stiffness, failure load, and cortical load fraction at the ultradistal and distal tibia, and the distal radius than DM. Comparing nondiabetic Fx and Co, we only found a nonsignificant trend with increase in pore volume (+38.9%, p = 0.060) at the ultradistal radius. The results of our study suggest that severe deficits in cortical bone quality are responsible for fragility fractures in postmenopausal diabetic women. © 2013 American Society for Bone and Mineral Research  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号