首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
BACKGROUND: The functional role of brain-derived neurotrophic factor (BDNF) is enhanced following cerebral ischemic injury providing neurons with an important self-protection mechanism in early stage ischemia/hypoxia. OBJECTIVE: To investigate the expression pattern of BDNF in different rat hippocampal regions following focal cerebral ischemic injury. DESIGN, TIME AND SETTING: We performed a comparative and neurobiological study of animals in the Department of Histology and Embryology and the Central Laboratory, Hebei Medical University from March to December 2003. MATERIALS: Forty healthy Sprague Dawley rats were randomly divided into a cerebral ischemia group and a sham operation group, with 20 rats per group. METHODS: In the cerebral ischemia group, we occluded the right middle cerebral artery with a suture, threading it to a depth of 17-19 mm. In the sham operation group, the threading depth was approximately 10mm. MAIN OUTCOME MEASURES: We analyzed the expression of BDNF in different hippocampal regions by immunohistochemical staining of brain sections taken on post-operative days 7, 14, 21 and 30. RESULTS: Sham operation group: We observed a number of a few BDNF-positive cells with light staining in the hippocampal CA1 CA4 regions and dentate gyms. Cerebral ischemia group: compared with the sham operation group, BDNF increased on day 7, significantly increased on day 14, and reached a peak on day 21 (P 〈 0.05). Furthermore, irnmunologically reactive products were darkly stained, and neurons had long axons. BDNF was particularly highly expressed in the hippocampal CA3 and CA4 regions and dentate gyms. CONCLUSION: Cerebral ischemic injury can damage hippocampal neurons. Neurons can increase their anti-ischemic capacity by increasing BDNF expression in the hippocampal CA3 and CA4 regions and dentate gyms.  相似文献   

2.
目的探讨脑缺血再灌流后海马氨基酸递质变化与神经元损害的关系。方法建立大鼠前脑缺血再灌流模型,测定海马CA1区和CA3/齿状回区游离氨基酸含量,观察阻断隔-海马通路对海马神经元损害和氨基酸水平的影响。结果(1)海马结构中仅CA1区神经元明显损害,但CA1区和CA3/齿状回区的Glu、Asp和GABA含量无差异。(2)阻断隔-海马通路可明显减轻海马神经元损害,但对海马氨基酸水平变化无影响。结论脑缺血再灌流后,氨基酸递质水平的异常变化不是海马CA1区神经元选择性易损的唯一决定因素,隔-海马通路末梢释放的神经递质也参与海马神经元损害过程。  相似文献   

3.
Endogenous neurogenesis can arise from a variety of physiological stimuli including exercise, learning, or "enriched environment" as well as pathological conditions such as ischemia, epilepsy or cortical spreading depression. Whether all these conditions use a common trigger to set off endogenous neurogenesis is yet unclear. We hypothesized that cortical spreading depression(CSD) induces neurogenesis in the cerebral cortex and dentate gyrus after cerebral venous ischemia. Forty-two Wistar rats alternatively underwent sham operation(Sham), induction of ten CSDs or venous ischemia provoked via occlusion of two adjacent superficial cortical vein followed by ten induced CSDs(CSD + 2-VO). As an additional control, 15 na?ve rats received no intervention except 5-bromo-2′-deoxyuridine(Brd U) treatment for 7 days. Sagittal brain slices(40 μm thick) were co-stained for Brd U and doublecortin(DCX; new immature neuronal cells) on day 9 or Neu N(new mature neuronal cells) on day 28. On day 9 after sham operation, cell proliferation and neurogenesis occurred in the cortex in rats. The sole induction of CSD had no effect. But on days 9 and 28, more proliferating cells and newly formed neurons in the ipsilateral cortex were observed in rats subjected to CSD + 2VO than in rats subjected to sham operation. On days 9 and 28, cell proliferation and neurogenesis in the ipsilateral dentate gyrus was increased in sham-operated rats than in na?ve rats. Our data supports the hypothesis that induced cortical neurogenesis after CSD + 2-VO is a direct effect of ischemia, rather than of CSD alone.  相似文献   

4.
Recent studies demonstrated that neurogenesis in the adult hippocampus increased after transient global ischemia; however, the molecular mechanism underlying increased neurogenesis after ischemia remains unclear. The finding that proliferation of progenitor cells occurred at least a week after ischemic insult suggests that the stimulus was not an ischemic insult to progenitor cells. To clarify whether focal ischemia increases the rate of neurogenesis in the remote area, the authors examined the contralateral hemisphere in rats subjected to permanent occlusion of the middle cerebral artery. In the subgranular zone of the hippocampal dentate gyrus, the numbers of bromodeoxyuridine (BrdU)-positive cells increased approximately sixfold 7 days after ischemia. In double immunofluorescence staining, more than 80% of newborn cells expressed Musashi1, a marker of neural stem/progenitor cells, but only approximately 10% of BrdU-positive cells expressed glial fibrillary acidic protein (GFAP), a marker of astrocytes. The number of BrdU-positive cells markedly decreased 28 days after BrdU administration after ischemia, but it was still elevated compared with that of sham-operated rats. In double immunofluorescence staining, 80% of newborn cells expressed NeuN, a marker of differentiated neurons, and 10% of BrdU-positive cells expressed GFAP. However, in the other areas of the contralateral hemisphere including the rostral subventricular zone, the number of BrdU-positive cells remained unchanged. These results showed that focal ischemia stimulated the proliferation of neuronal progenitor cells, but did not support survival of newborn cells in the contralateral hippocampus.  相似文献   

5.
OBJECTIVE: Transient global ischemia increases neurogenesis in the dentate gyrus of adult rodents and this may have a functional relevance. The aim of the present study was to explore the possible mechanisms underlying the effects of ginsenoside Rg1 on hippocampal neurogenesis in adult gerbils suffered from global ischemia. METHODS: Experimental groups include: Group 1: sham operation; Group 2: sham operation + MK-801 (3 mg/kg); Group 3: ischemia only; Group 4: ischemia + MK-801; Group 5: ischemia + Rg1 (5 mg/kg); Group 6: ischemia + Rg1 + MK-801. At the tenth day after ischemia, six gerbils from Groups 1, 3 and 5 were killed and the activity of inducible nitric oxide synthase (iNOS) in the cortex and hippocampus was measured. The rest animals were given bromodeoxyuridine (BrdU, 50 mg/kg) every 4 hours for 12 hours at the tenth day after ischemia and perfused 24 hours after the last injection of BrdU. Immunohistochemistry was performed to identify proliferating cells in the dentate gyrus. RESULTS: Ginsenoside Rg1 increased the magnitude of ischemia induced proliferation of hippocampal progenitor cells and enhanced the activity of iNOS in both the hippocampus and cortex. Systematic injection of MK-801 completely blocked the proliferation increasing effect of Rg1. CONCLUSION: Ginsenoside Rg1 increases neurogenesis after transient global ischemia. The mechanisms underlying this effect may involve activation of iNOS activity and N-methyl-D-aspartate (NMDA) receptors in the brain.  相似文献   

6.
The chemokine stromal cell-derived factor-1 (SDF-1) regulates neuronal development via the chemokine receptor CXCR4. In the adult brain the SDF-1/CXCR4 system was implicated in neurogenesis, neuromodulation, brain inflammation, tumor growth, and HIV encephalopathy. Until the recent identification of RDC1/CXCR7 as the second SDF-1 receptor, CXCR4 was considered to be the only receptor for SDF-1. Here we provide the first map of CXCR7 mRNA expression in the embryonic and adult rat brain. At embryonic stages, CXCR7 and CXCR4 were codistributed in the germinative zone of the ganglionic eminences, caudate putamen, and along the routes of GABAergic precursors migrating toward the cortex. In the cortex, CXCR7 was identified in GABAergic precursors and in some reelin-expressing Cajal-Retzius cells. Unlike CXCR4, CXCR7 was abundant in neurons forming the cortical plate and sparse in the developing dentate gyrus and cerebellar external germinal layer. In the adult brain, CXCR7 was expressed by blood vessels, pyramidal cells in CA3, and mature dentate gyrus granule cells, which is reminiscent of the SDF-1 pattern. CXCR7 and CXCR4 overlapped in the wall of the four ventricles. Further neuronal structures expressing CXCR7 comprised the olfactory bulb, accumbens shell, supraoptic and ventromedial hypothalamic nuclei, medial thalamus, and brain stem motor nuclei. Also, GLAST-expressing astrocytes showed signals for CXCR7. Thus, CXCR4 and CXCR7 may cooperate or act independently in SDF-1-dependent neuronal development. In mature neurons and blood vessels CXCR7 appears to be the preponderant SDF-1-receptor.  相似文献   

7.
《Neurological research》2013,35(3):270-273
Abstract

Objective: Transient global ischemia increases neurogenesis in the dentate gyrus of adult rodents and this may have a functional relevance. The aim of the present study was to explore the possible mechanisms underlying the effects of ginsenoside Rg1 on hippocampal neurogenesis in adult gerbils suffered from global ischemia.

Methods: Experimental groups include: Group 1: sham operation; Group 2: sham operation + MK-801 (3 mg/kg); Group 3: ischemia only; Group 4: ischemia + MK-801; Group 5: ischemia + Rg1 (5 mg/kg); Group 6: ischemia + Rg1 + MK-801. At the tenth day after ischemia, six gerbils from Groups 1, 3 and 5 were killed and the activity of inducible nitric oxide synthase (iNOS) in the cortex and hippocampus was measured. The rest animals were given bromodeoxyuridine (BrdU, 50 mg/kg) every 4 hours for 12 hours at the tenth day after ischemia and perfused 24 hours after the last injection of BrdU. Immunohistochemistry was performed to identify proliferating cells in the dentate gyrus.

Results: Ginsenoside Rg1 increased the magnitude of ischemia induced proliferation of hippocampal progenitor cells and enhanced the activity of iNOS in both the hippocampus and cortex. Systematic injection of MK-801 completely blocked the proliferation increasing effect of Rg1.

Conclusion: Ginsenoside Rg1 increases neurogenesis after transient global ischemia. The mechanisms underlying this effect may involve activation of iNOS activity and N-methyl-D-aspartate (NMDA) receptors in the brain.  相似文献   

8.
BACKGROUND: The mobilization of endogenous stem cells is an effective way to promote repair following ischemic brain damage. Buyang Huanwu decoction (BHD) can effectively improve cerebral blood flow and protect against cerebral ischemia/reperfusion damage. OBJECTIVE: To study the effects of BHD on cell proliferation and differentiation in the hippocampal dentate gyrus of rats following cerebral infarction, to investigate the protective effects of BHD against cerebral infarction, and to analyze the dose-effect relationship. DESIGN, TIME AND SETTING: This randomized, controlled, animal study was performed at the Laboratory of Department of Physiology, Henan College of Traditional Chinese Medicine, China from June 2007 to February 2008. MATERIALS: A total of 36 male, Sprague Dawley rats, aged 20-21 months, were equally and randomly assigned to the following groups: sham operation, model control, and nimodipine, as well as high-dose, moderate-dose, and low-dose BHD. BHD was composed of milkvetch root, Chinese angelica, red peony root, earthworm, peach seed, safflower, and Szechwan Iovage rhizome, which were provided by the Outpatient Department, Henan College of Traditional Chinese Medicine, China. METHODS: The Chinese medicinal ingredients described above were decocted. The external carotid artery was ligated in rats from the sham operation group. Rat models of focal cerebral infarction were established by middle cerebral artery occlusion in the model control and nimodipine groups, as well as the high-dose, moderate-dose, and low-dose BHD groups. The drugs were administered by gavage 5 days, as well as 2 hours, prior to model induction. Rats in the nimodipine group were daily administered a 6 mg/kg nimodipine suspension by gavage. Rats in the high-dose, moderate-dose, and low-dose BHD groups were administered daily 26, 13, and 6.5 g/kg BHD, respectively. Rats in the sham operation and model control groups were treated with an equal volume of saline. MAIN OUTCOME MEASURES: The effects of BHD on neurological dysfunction score, brain water content, cell proliferation and differentiation in the hippocampal dentate gyrus, and pathological changes in the ischemic brain hemisphere were measured in cerebral infarction rats. RESULTS: Compared with the sham operation group, the neurological dysfunction score, brain water content, number of BrdU-positive cells, BrdU/NeuN-positive cells, and BrdU/GFAP-positive cells in the hippocampal dentate gyrus significantly increased in the model control group (P 〈 0.01 ). Compared with the model control group, neurological dysfunction score and brain water content were significantly decreased (P 〈 0.01 or 0.05), as were the number of BrdU-positive and BrdU/NeuN-positive cells (P 〈 0.01 or 0.05). The number of BrdU/GFAP-positive cells was significantly reduced (P 〈 0.05) in the nimodipine group, high-dose, moderate-dose, and low-dose BHD groups. Compared with the nimodipine group, the neurological dysfunction score was significantly reduced in the moderate-dose BHD group (P 〈 0.05). However, the number of BrdU-positive cells was significantly increased in the rat hippocampal dentate gyrus in the high-dose and moderate-dose BHD groups (P 〈 0.01 or 0.05). The following was determined by microscopy: slightly disarranged neural cells, mild vascular dilatation, inflammatory cell infiltration, and light tissue edema were observed in the nimodipine group; inflammatory celt infiltration was reduced in the low-dose BHD group; cerebral edema and inflammatory cell infiltration were significantly reduced in the high-dose and in the moderate-dose BHD group. Electron microscopy revealed lipofuscin, slightly swollen mitochondria, and normal rough endoplasmic reticulum in the high-dose and moderate-dose BHD groups. Improvement was best in the moderate-dose BHD group. CONCLUSION: Cerebral ischemia activated proliferation of neural stem cells in the rat hippocampal dentate gyrus. The actions of BHD against cerebral ischemia/reperfusion damage correlated with proliferation and differentiation of neural stem cells in the hippocampal dentate gyrus. A moderate-dose of BHD resulted in the most effective outcome.  相似文献   

9.
In the present study, cerebral ischemia was induced by a 10 min transient bilateral common carotid artery occlusion in rats combined with arterial blood pressure lowering to 37-42 mm Hg during occlusion. When histologically evaluated at 7 and 28 days after the forebrain ischemia (DAI) by staining with cresyl violet and Fluoro-Jade, the hippocampal CA1 region was most prominently damaged. At 7 DAI, treatment with cilostazol (60 mg/kg/day, orally) significantly reduced the neuronal damage in the CA1 region. The number of surviving neurons, visualized by NeuN immunostaining, in the CA1 region significantly increased at 7 and 28 DAI in the cilostazol-treated groups. To elucidate whether cilostazol enhances hippocampal neurogenesis after ischemia, we planned a co-labeling study using 5-bromo-2′-deoxyuridine (BrdU), NeuN (a marker for mature neurons) and doublecortin (DCX) (a marker for immature migratory neuroblasts). Double immunofluorescence staining at 7 DAI showed that cilostazol significantly increased the immunoreactivities of both DCX and phosphorylated cAMP-response element-binding protein (CREB) in the dentate gyrus that was co-expressed with BrdU. These results suggest that cilostazol has dual beneficial effects preserving the CA1 hippocampal region and promoting the generation of immature migratory neuroblasts in the dentate gyrus by upregulation of CREB phosphorylation after transient forebrain ischemia.  相似文献   

10.
《Neurological research》2013,35(9):969-976
Abstract

Background: In the adult mammalian brain, it is considered that neurogenesis persists in limited regions such as the hippocampal dentate gyrus (DG) and the subventricular zone (SVZ) of the lateral ventricle. On the other hand, neurogenesis in the cortex after cerebral ischemia and its role in post-stroke recovery have not been clarified yet. In this study, we investigated neurogenesis in the cortex and the spatiotemporal profile of neural progenitors in SVZ and DG of rats subjected to transient focal cerebral ischemia.

Materials and methods: Male Sprague–Dawley rats (270–300 g) were subjected to 60 minute middle cerebral artery occlusion. Proliferating cells were labeled by the cumulative administration of BrdU 1, 2, 3, 4, 6 and 8 weeks after ischemia induction (at weeks 1–4, 6 and 8). Double labeling was also performed with antibodies against BrdU and NeuN.

Results: BrdU-positive cells proliferated in DG and SVZ of the bilateral hemispheres, and their proliferation peaked at week 3 in SVZ and at week 4 in DG. In the peri-infarct zone of cerebral cortex, BrdU-positive cells co-expressed NeuN from weeks 3 to 8.

Conclusion: Neurogenesis was observed in the cerebral cortex and proliferation of neural progenitors occurred in SVZ and DG of rats subjected to transient focal cerebral ischemia. Our data might indicate that endogenous dormant neural stem cells residing in the cortex were activated by ischemic insult to induce the proliferation of neural progenitors and differentiation into mature neurons.  相似文献   

11.
背景:研究表明跑台运动能促进健康大鼠海马的神经细胞再生。 目的:观察跑台运动对脑缺血再灌注模型大鼠海马神经再生和血管内皮生长因子mRNA表达的影响。 方法:用线栓法阻塞大脑中动脉以建立单侧脑缺血再灌注模型大鼠,将建模成功大鼠随机分为跑台运动组和安静对照组,另设假手术组。安静对照组和假手术组大鼠安静饲养,跑台运动组进行7 d跑台运动。跑台运动组和安静对照组大鼠在每天跑台运动前腹腔注射5-溴脱氧尿嘧啶核苷溶液。 结果与结论:免疫组织化学染色结果显示,跑台运动组大鼠双侧海马及齿状回5-溴脱氧尿嘧啶核苷阳性表达细胞数量显著多于安静对照组(P < 0.01)。实时荧光定量PCR检测结果显示,跑台运动组大鼠海马血管内皮生长因子mRNA表达水平显著高于安静对照组和假手术组(P < 0.05)。结果证实,跑台运动能够明显促进脑缺血再灌注大鼠海马神经细胞的再生并上调海马组织血管内皮生长因子的表达。  相似文献   

12.
目的探讨缺血再灌注对大鼠海马CA1及海马齿状核(DG)神经元内19S蛋白酶体的影响。方法采用20min全脑缺血的大鼠模型,20只大鼠分为5组,分别为假手术组及按照再灌注时间分为30min组,4h组,24h组,72h组,每组4只。采用含有4%多聚甲醛的PBS液体进行灌注,取出脑组织,放于多聚甲醛中固定24h后行冠状切片,应用免疫组织化学法标记抗19S蛋白酶体抗体,应用激光共聚焦显微镜对组织切片进行观察。结果大鼠海马区CA1神经元内19S蛋白酶体在缺血再灌注30min后开始减少,4h略增高,然后逐渐减少,直至72h细胞大部份死亡;DG神经元内的19S蛋白酶体也于再灌注30min后减少,4h略增高,然后逐渐减少,至24h程度最重,72h则有所恢复。结论全脑缺血再灌注后,海马CA1及DG神经元内19S蛋白酶体的变化影响了神经元内蛋白的降解,是导致缺血后神经元死亡的一个因素。  相似文献   

13.
Spatial cognitive impairment is common after stroke insults. Voluntary exercise could improve the impaired spatial memory. Newly generated neurons in the dentate gyrus are necessary for the acquisition of new hippocampus-dependent memories. However, it is not well known whether voluntary exercise after stroke promotes neurogenesis in the adult dentate gyrus, thereby promoting spatial memory recovery. Here, we examined in mice subjected to focal cerebral ischemia the effect of voluntary or forced exercise on neurogenesis in the ischemic dentate gyrus and spatial memory. Exposure to voluntary wheel running after stroke enhanced newborn cell survival and up-regulated the phosphorylation of cAMP response element binding protein (CREB) in the dentate gyrus and reversed ischemia-induced spatial memory impairment. However, the enhanced newborn cell survival and CREB phosphorylation in the dentate gyrus and improved spatial memory were not observed in the mice exposed to forced swimming. Moreover, there was a significant correlation between the total number of surviving newborn cells in the dentate gyrus and the ability of mice to locate the platform in the Morris water maze. These results suggest that, in the adult mice, exposure to voluntary exercise after ischemic stroke may promote newborn cells survival in the dentate gyrus by up-regulating CREB phosphorylation and consequently restore impaired hippocampus-dependent memory.  相似文献   

14.
Cognitive deficits, including spatial memory impairment, are very common after ischemic stroke. Neurogenesis in the dentate gyrus (DG) contributes to forming spatial memory in the ischemic brain. Fluoxetine, a selective serotonin reuptake inhibitor, can enhance neurogenesis in the hippocampus in physiological situations and some neurological diseases. However, whether it has effects on ischemia-induced spatial cognitive impairment and hippocampal neurogenesis has not been determined. Here we report that fluoxetine treatment (10 mg kg(-1), i.p.) for 4 weeks promoted the survival of newborn cells in the ischemic hippocampus and, consequently, attenuated spatial memory impairment of mice after focal cerebral ischemia. Disrupting hippocampal neurogenesis blocked the beneficial effect of fluoxetine on ischemia-induced spatial cognitive impairment. These results suggest that chronic fluoxetine treatment benefits spatial cognitive function recovery following ischemic insult, and the improved cognitive function is associated with enhanced newborn cell survival in the hippocampus. Our results raise the possibility that fluoxetine can be used as a drug to treat poststroke spatial cognitive deficits.  相似文献   

15.
目的 探讨N-Myc下游调节基因2(N-Myc downstream regulated gene 2,NDRG2)与癫痫发作后海马齿状回神经发生的关系。方法 C57BL/6小鼠20只,随机分为癫痫组和对照组,每组又分为癫痫造模后1和7 d两个时间点,每个时间点5只,通过蛋白免疫印迹检测癫痫后海马齿状回NDRG2蛋白相对表达水平和mRNA相对表达水平变化; 使用双皮质素(DCX)染色标记未成熟神经元,神经巢蛋白(Nestin)标记神经干细胞,神经核蛋白(NeuN)标记成熟神经元,观察NDRG2对海马齿状回神经干细胞增殖影响; 采用RT-PCR检测发状分裂相关增强子1(hairy and enhancer of split 1,Hes 1)、NDRG2 mRNA相对表达表达水平,并分析两者之间的相关性; 观察NDRG2参与癫痫发作后神经发生的可能机制。结果 癫痫组与对照组比较,DCX、Nestin、NeuN、Hes1、NDRG2蛋白相对表达水平在1和7 d这2个时间点有显著性增高,并随时间逐渐递增。结论 癫痫发作后海马NDRG2蛋白相对表达水平增高,与癫痫发作后海马齿状回的神经细胞增值时间具有一致性和相关性,NDRG2可能参与癫痫发作后海马齿状回的神经发生过程; 同时发现海马NDRG2表达增加和Hes1分子表达增加具有相关性,故推测NDRG2可能通过Hes1参与癫痫发作后海马齿状回的神经发生。  相似文献   

16.
BACKGROUND: It is widely accepted that mild hypothermia can protect against injury to cerebral ischemia/reperfusion. OBJECTIVE: To observe the effects of mild hypothermia on microtubule-associated protein 2 (MAP2) expression in the hippocampal dentate gyms in rats following cerebral ischemia/reperfusion. Also, to study neuronal ultrastmctural changes in the dentate gyms to investigate the mechanism of the protection against injury to cerebral ischemia/reperfusion conferred by mild hypothermia. DESIGN, TIME AND SETTING: This randomized grouping, neural cell morphology trial was performed at the Laboratory Animal Center of Yijishan Hospital between March and June 2007. MATERIALS: Eighty-five healthy male Sprague Dawley rats were randomly allocated to three groups: mild hypothermia (n = 40), normothermia (n = 40), and sham-operated (n = 5). METHODS: Cerebral ischemia/reperfusion injury was induced by the suture method in the mild hypothermia and normothermia groups, with a threading depth of 180.5 mm. In the sham-operated group, the suture was inserted 15 mm, with no vascular ligafion, and was followed by reperfusion 2 hours later. In the sham-operated and normothermia groups, the rat rectal temperature was maintained at 36-37 ℃ ; in the mild hypothermia group, it was controlled at 32-33 ℃. MAIN OUTCOME MEASURES: The hippocampal dentate gyms was serially sectioned for hematoxylin-eosin staining and MAP2 immunohistochemistry. Ultrastructural changes and the MAP2 absorbance value of the hippocampal dentate gyms were examined by transmission electron microscopy. RESULTS: The sham-operated group exhibited approximately normal ultrastructure of neurons in the bilateral hippocampal dentate gyms. In the normothermia group, ischemic hippocampal dentate gyms neurons were found with markedly fewer normal mitochondria, greatly proliferated rough endoplasmic reticulum, and a swollen and dysmorphic Golgi. In the mild hypothermia group, at each corresponding time point, these abnormal changes w  相似文献   

17.
Joo Y  Lee SH  Ha S  Hong BH  Kim JH  Suh YH  Kim HS 《Neuroreport》2011,22(5):200-205
Amyloid precursor protein binding protein-1 (APP-BP1) binds to the carboxyl terminus of APP. In this study, we explored whether APP-BP1 expression is affected by focal transient cerebral ischemia induced by middle cerebral artery occlusion in Wistar rats. APP-BP1 expression was increased in the dentate gyrus of the hippocampus and in the subventricular zone of rats exposed to focal transient cerebral ischemia. In addition, APP-BP1 immunoreactivity overlapped with antidoublecortin and anti-5-bromo-2-deoxyuridine labeling. Focal transient cerebral ischemia has been reported earlier to induce neurogenesis in adult brains. The upregulation of APP-BP1 expression in neural progenitor cells after focal transient ischemia suggests that this protein contributes to the neurogenesis induced by transient ischemia and reperfusion.  相似文献   

18.
Neural stem cells persist in the adult mammalian forebrain and are a potential source of neurons for repair after brain injury. The two main areas of persistent neurogenesis, the subventricular zone (SVZ)-olfactory bulb pathway and hippocampal dentate gyrus, are stimulated by brain insults such as stroke or trauma. Here we focus on the effects of focal cerebral ischemia on SVZ neural progenitor cells in experimental stroke, and the influence of mechanical injury on adult hippocampal neurogenesis in models of traumatic brain injury (TBI). Stroke potently stimulates forebrain SVZ cell proliferation and neurogenesis. SVZ neuroblasts are induced to migrate to the injured striatum, and to a lesser extent to the peri-infarct cortex. Controversy exists as to the types of neurons that are generated in the injured striatum, and whether adult-born neurons contribute to functional restoration remains uncertain. Advances in understanding the regulation of SVZ neurogenesis in general, and stroke-induced neurogenesis in particular, may lead to improved integration and survival of adult-born neurons at sites of injury. Dentate gyrus cell proliferation and neurogenesis similarly increase after experimental TBI. However, pre-existing neuroblasts in the dentate gyrus are vulnerable to traumatic insults, which appear to stimulate neural stem cells in the SGZ to proliferate and replace them, leading to increased numbers of new granule cells. Interventions that stimulate hippocampal neurogenesis appear to improve cognitive recovery after experimental TBI. Transgenic methods to conditionally label or ablate neural stem cells are beginning to further address critical questions regarding underlying mechanisms and functional significance of neurogenesis after stroke or TBI. Future therapies should be aimed at directing appropriate neuronal replacement after ischemic or traumatic injury while suppressing aberrant integration that may contribute to co-morbidities such as epilepsy or cognitive impairment.  相似文献   

19.
《中国神经再生研究》2016,(8):1254-1259
Recent evidence exists that glucose transporter 3 (GLUT3) plays an important role in the energy metabo-lism in the brain. Most previous studies have been conducted using focal or hypoxic ischemia models and have focused on changes in GLUT3 expression based on protein and mRNA levels rather than tissue levels. In the present study, we observed change in GLUT3 immunoreactivity in the adult gerbil hippocampus at various time points after 5 minutes of transient forebrain ischemia. In the sham-operated group, GLUT3 immunoreactivity in the hippocampal CA1 region was weak, in the pyramidal cells of the CA1 region in-creased in a time-dependent fashion 24 hours after ischemia, and in the hippocampal CA1 region decreased signiifcantly between 2 and 5 days after ischemia, with high level of GLUT3 immunoreactivity observed in the CA1 region 10 days after ischemia. In a double immunolfuorescence study using GLUT3 and gli-al-ifbrillary acidic protein (GFAP), we observed strong GLUT3 immunoreactivity in the astrocytes. GLUT3 immunoreactivity increased after ischemia and peaked 7 days in the dentate gyrus after ischemia/reperfu-sion. In a double immunolfuorescence study using GLUT3 and doublecortin (DCX), we observed low level of GLUT3 immunoreactivity in the differentiated neuroblasts of the subgranular zone of the dentate gyrus after ischemia. GLUT3 immunoreactivity in the sham-operated group was mainly detected in the subgran-ular zone of the dentate gyrus. These results suggest that the increase in GLUT3 immunoreactivity may be a compensatory mechanism to modulate glucose level in the hippocampal CA1 region and to promote adult neurogenesis in the dentate gyrus.  相似文献   

20.
Baldauf K  Reymann KG 《Brain research》2005,1056(2):158-167
The persistence of neurogenesis in the adult mammalian forebrain suggests that endogenous precursors may be a potential source for neuronal replacement after injury or neurodegeneration. On the other hand basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) can facilitate neural precursor proliferation in the adult rodent subventricular zone (SVZ) and dentate gyrus. As the application of EGF and bFGF was found to boost neurogenesis after global ischemia, in this study we investigated whether a combined intracerebroventricular (i.c.v.) EGF/bFGF treatment over a period of 2 weeks affects the proliferation of newly generated cells in the endothelin-1 model of transient focal ischemia in adult male Sprague-Dawley rats as well. As assessed by toluidine blue staining, EGF/bFGF substantially increased the infarct volume in ischemic animals. Chronic 5'-bromodeoxyuridine (BrdU) i.c.v. application revealed an EGF/bFGF-induced increase in cell proliferation in the lateral ventricle 14 days after surgery. Proliferation in the striatum increased after ischemia, whereas in the dentate gyrus and in the dorsal 3rd ventricle the number of cells decreased. Analysis of the neuronal fate of these cells by co-staining with a doublecortin (DCX) antibody showed that the growth factors concomitantly nearly doubled early neurogenesis in the ipsilateral striatum in ischemic animals but diminished it in the dentate gyrus. Because of the increased infarct volume and unclear long-term outcome further modifications of a chronic treatment schedule are needed before final conclusions concerning the perspectives of such an approach can be made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号