首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To seek direct evidence for the notion that stem cells in the thymus need to be constantly replenished from the bone marrow (BM), fetal (day 15) thymuses from normal BALB/c mice were grafted into T and B cell-deficient C.B-17 SCID mice (both H-2d, I-E+). The thymus grafts in these mice showed normal thymopoiesis for the first 3 wk postgrafting but then developed sudden atrophy with near complete loss of CD4+8+ cells by 4-5 wk. Such atrophy was not seen when the thymus-grafted mice were cotransplanted with normal BM cells. The lymph nodes of SCID mice receiving thymus grafts alone contained mature T cells but virtually no B cells. This lack of B cells was associated with aberrant I-E-restricted V beta deletion: the depletion of V beta 3+ and V beta 5+ T cells was near complete, whereas V beta 11+ cells showed only marginal depletion.  相似文献   

2.
The introduction of clonal assays and long-term culture systems has resulted in considerable progress in the understanding of the early events that control self-renewal and commitment to differentiation of pluripotent hematopoietic stem cells (PHSC). Relatively little is known about the factors that control the commitment of PHSC to the lymphoid lineages, especially the T cell lineage. In the present study, the expression of the proto-oncogene c-kit was used to isolate and study the capacity of highly purified day 14 colony-forming units-spleen (CFU-S) to reconstitute the thymus of sublethally irradiated Thy-1 congenic recipient mice. We demonstrate here that one c-kit positive (c-kitpos) stem cell upon intrathymic transfer can effectively reconstitute the thymus of a sublethally irradiated recipient. After a lag phase of 15 d, high levels of donor-derived thymocytes (Thy-1.1pos) could be detected until 65 d after transplantation in Thy-1.2pos host mice. Donor-derived cells were only detected in the lobe of the thymus in which cells were previously injected and not in the noninjected lobe. These data suggest that c-kitpos stem cells do not migrate from one lobe to another and that they do not re-seed the thymus after having migrated to the bone marrow. The level and duration of reconstitution was found to be cell dose dependent, suggesting that, over time, endogenous stem cells compete with donor stem cells for available sites in the thymus microenvironment. The data presented in this paper demonstrate that commitment of purified adult bone marrow-derived c-kitpos stem cells to the T cell differentiation pathway can occur in the thymus and does not have to happen in the bone marrow.  相似文献   

3.
Strain C.B17 scid/scid (SCID) mice, which lack functional T and B lymphocytes, show heightened susceptibility to the induction of thymic lymphomas by x-irradiation. Susceptibility is highest in thymus-chimeric SCID-BL mice (thymectomized SCID mice bearing a C57BL thymus graft). All SCID-BL lymphomas originate in the cells of the thymic graft (C57BL type) and lack murine leukemia virus expression. Both SCID and SCID-BL lymphomas are phenotypically CD4-8+ and/or CD4+8+, but only the SCID-BL tumors express CD3. Injection of C57BL or BALB/c bone marrow into irradiated SCID-BL mice prevents lymphoma development, but SCID marrow is completely ineffective. The results suggest that the scid condition enhances the activity of a putative lymphomagenic agent induced in the bone marrow by x-irradiation and that C57BL thymic cells are highly sensitive targets. Moreover, the failure of SCID bone marrow to protect against lymphomagenesis vs. the efficacy of marrow from immunocompetent donors points to involvement of T or B lineage cells in this process.  相似文献   

4.
DNA recombination of the immunoglobulin (Ig) or T cell receptor (TCR) gene loci is an essential step in the production of lymphocytes bearing antigen-specific receptors. Mice that lack the ability to rearrange their Ig and TCR gene loci are devoid of mature B and T cells. Complete rearrangement and expression of the TCR-beta chain has been suggested to allow immature thymocytes to switch from the CD4-/CD8- to the CD4+/CD8+ stage of thymic development. Thus, thymocytes from severe combined immune deficient (SCID) mice or mice deficient in recombinase activation genes (RAG), which do not undergo proper DNA rearrangement, are arrested at the early CD4-/CD8- stage of development. B cell precursors in SCID or RAG mice do not progress from the B220+/sIgM- /heat stable antigen (HSA)+/CD43+ to the B220+/sIgM-/HSA+/CD43- stage. In an attempt to reconstitute RAG-2-/- mice with bone marrow- or fetal liver-derived progenitor cells, we subjected these mice to sublethal doses of gamma-radiation. It is surprising that in the absence of donor cells, irradiated RAG-2-/- mice revealed a dramatic change in their lymphoid phenotype. 14 d after irradiation, the majority of thymocytes had advanced to the CD4+/CD8+ stage of T cell development and a small number of bone marrow precursors had progressed to the CD43-, HSAhi stage of B cell development. Analysis of the resulting CD4+/CD8+ thymocytes revealed no surface expression of the TCR/CD3 complex and no V-D-J rearrangement of the TCR-beta gene locus. Our findings provide evidence for a novel pathway that allows the transition of thymocytes from the CD4-/CD8- to the CD4+/CD8+ stage and that does not appear to require TCR-beta chain rearrangement.  相似文献   

5.
Notch1 signaling is required for T cell development. We have previously demonstrated that expression of a dominant active Notch1 (ICN1) transgene in hematopoietic stem cells (HSCs) leads to thymic-independent development of CD4(+)CD8(+) double-positive (DP) T cells in the bone marrow (BM). To understand the function of Notch1 in early stages of T cell development, we assessed the ability of ICN1 to induce extrathymic T lineage commitment in BM progenitors from mice that varied in their capacity to form a functional pre-T cell receptor (TCR). Whereas mice repopulated with ICN1 transduced HSCs from either recombinase deficient (Rag-2(-/)-) or Src homology 2 domain--containing leukocyte protein of 76 kD (SLP-76)(-/)- mice failed to develop DP BM cells, recipients of ICN1-transduced Rag-2(-/)- progenitors contained two novel BM cell populations indicative of pre-DP T cell development. These novel BM populations are characterized by their expression of CD3 epsilon and pre-T alpha mRNA and the surface proteins CD44 and CD25. In contrast, complementation of Rag-2(-/)- mice with a TCR beta transgene restored ICN1-induced DP development in the BM within 3 wk after BM transfer (BMT). At later time points, this population selectively and consistently gave rise to T cell leukemia. These findings demonstrate that Notch signaling directs T lineage commitment from multipotent progenitor cells; however, both expansion and leukemic transformation of this population are dependent on T cell-specific signals associated with development of DP thymocytes.  相似文献   

6.
We found that c-kit-positive, lineage marker-negative, Thy-1lo cells are present in both bone marrow and thymus ("BM c-kit" and "thymus c- kit" cells). Although the two cell types are phenotypically similar, only BM c-kit cells showed the potential to form colonies in vitro as well as in vivo. However, both of them revealed extensive growth and differentiation potential to T cells after direct transfer into an irradiated adult thymus, or a deoxyguanosine-treated fetal thymus. Time course analysis showed that thymus c-kit cells differentiated into CD4CD8 double-positive cells approximately 4 d earlier than BM c-kit cells did. In addition, anti-c-kit antibody blocked T cell generation of BM c-kit cells but not of thymus c-kit cells. Intravenous injection of thymus c-kit resulted in the generation of not only T cells, but B as well as NK1.1+ cells. These data provide evidence that thymus c-kit cells represent common lymphoid progenitors with the differentiation potential to T, B, and possibly NK cells. The c-kit-mediated signaling appears to be essential in the transition from BM c-kit to thymus c-kit cells.  相似文献   

7.
Lymphoid fetal liver cultures (LFLC) are long-term, nontransformed cultures of early B lymphoid lineage cells which appear developmentally blocked at the pre-B stage in vitro. When injected into severe combined immunodeficient (SCID) mice, cells from LFLC could reconstitute splenic B lymphocytes and serum IgM. T lymphocyte reconstitution was not observed and serum IgG levels were very low. IgG3 was the predominant gamma subisotype in the serum of the LFLC-reconstituted mice, indicating impaired class switching in these B lymphocytes. When thymocytes were coinjected with LFLC, the B lymphocytes were able to class switch fully and respond to T-dependent antigens. These serological responses were heterogeneous. This experimental system allows separation of three B lymphocyte developmental stages: early differentiation in vitro, progression to IgM secretion in vivo, and late differentiation dependent upon mature T lymphocytes in vivo. The unique advantage of this system is the ability to regulate the B lymphocyte developmental pathway in a defined, stepwise manner.  相似文献   

8.
Lethally irradiated C.B-17 +/+, C.B-17 scid/scid (severe combined immunodeficiency, SCID), BALB/c-nu/nu (nude), and C57BL/6 (B6) mice were challenged with H-2-homozygous or H-2-heterozygous totally allogeneic bone marrow cell (BMC) grafts. Some of the irradiated mice were immunized simultaneously with large numbers of irradiated marrow and spleen cells syngeneic with the viable BMC transferred. Irradiated SCID and nude mice, devoid of T cells but with normal NK cell function, were able to reject H-2-homozygous BMC grafts within 4 d. However, they were unable to reject H-2-heterozygous BMC allografts by 7 d even if they were immunized. B6 and C.B-17 +/+ mice were able to reject H-2 heterozygous BMC allografts by 7-8 d, but not as early as 4 d, if they were immunized. The rejection of H-2-homozygous BMC on day 4 was inhibited by administration of anti-NK-1.1 antibodies, but not by anti-Lyt-2 antibodies. Conversely, the rejection of H-2-heterozygous allogeneic BMC on day 8 was prevented by anti-Lyt-2 but not by anti-NK-1.1 antibodies. The data indicate that both NK cells and Lyt-2+ T cells can mediate rejection of allogeneic BMC acutely, even after exposure of mice to lethal doses of ionizing irradiation. NK cells appear to recognize Hemopoietic histocompatibility (Hh) antigens on H-2 homozygous stem cells. The inability of SCID and nude mice to reject H-2 heterozygous totally allogeneic BMC indicate that NK cells do not survey donor marrow cells for self H-2 antigens and reject those cells that express nonself H-2 antigens. The T cells presumably recognize conventional H-2 antigens (probably class I) under these conditions.  相似文献   

9.
We tested the ability of human cells from different hematopoietic tissues to generate graft versus host disease-like syndrome (GVHD) in sublethally irradiated non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice. Tissue sources of human hematopoietic cells were: (1) bone marrow (BM), (2) nonmobilized peripheral blood (PB), (3) mobilized peripheral blood stem-progenitor cells (PBSC), and (4) cord blood (CB). To avoid interindividual donor variation, part of this study was done using BM, PB, and PBSC donated by a single healthy adult volunteer. A total of 179 NOD/SCID mice received graded human hematopoietic cell doses [5-500 x 10(6) mononuclear cells (MNC), containing 2-325 x 10(6) CD3(+) T cells, per mouse] from individual donors. Mice were observed for the development of GVHD and sacrificed 60 days after transplantation (earlier if ill). Mice were analyzed quantitatively by flow cytometry for human hematopoietic cell types and histologically, especially for human T lymphocytes infiltrating BM. No mouse transplanted with the tested doses of human CB or BM cells developed GVHD (experimentally defined as >10% human T lymphocytes infiltrating the mouse BM). For PB and PBSC, the frequencies of death, death with GVHD, and GVHD were directly related to the dose and source of human cells. Because PB cells contaminate harvested BM, the results from infused BM and PB were next combined for further analysis (BM/PB). The relative risks (hazard ratios estimated from the proportional hazards model) for death with GVHD, for each 10 human T cell dose increase, were 1.15 for BM/PB (p < 0.0001) and 1.47 for PBSC (p < 0.0001). In this in vivo xenogeneic model, the average T cell from human PBSC generated GVHD more potently than did the average T cell from human BM/PB, and the average CB T cell had a much lower GVHD potential. These results suggest that the potential for clinical GVHD from an HLA-disparate donor graft is likely to be quantitatively dependent both on the total number of T lymphocytes in the donor graft and the tissue source of the graft. Quantitative criteria for optimal T cell content of allogeneic donor hematopoietic grafts from different sources are discussed.  相似文献   

10.
NOD/SCID小鼠脐血单个核细胞骨髓腔内移植的实验研究   总被引:8,自引:0,他引:8  
目的观察骨髓腔内移植(iBM)人脐血单个核细胞(MNC)对小鼠造血重建和免疫功能恢复的作用。方法NOD/SCID小鼠经137Cs全身照射后,在4h内无菌条件下局部麻醉后从尾静脉或骨髓腔内输注分离脐血MNC。受体小鼠随机分为5组:①对照组:骨髓腔内输注培养液;②阳性对照组(iTV):尾静脉输注脐血MNC3×107/只;③实验Ⅰ组(iBM1):骨髓腔内输注脐血MNC3×106/只;④实验Ⅱ组(iBM2):骨髓腔内输注脐血MNC1×107/只;⑤实验Ⅲ组(iBM3):骨髓腔内输注脐血MNC3×107/只。对照组4只小鼠,实验Ⅱ组7只小鼠,其余每组5只。24h后观察iBM22只小鼠未移植侧胫骨骨髓腔脐血细胞的迁移分布,动态观察移植后小鼠的存活和造血重建情况,7~8周后处死各组小鼠,检测骨髓细胞表面CD分子表达、碳青花(DilCM)染料示踪研究和脐血βactin的DNA标记。结果①照射后骨髓腔内输注脐血MNC,24h后在未输注脐血MNC的一侧胫骨骨髓细胞膜有DilCM标记;②7~8周后小鼠存活14只,其中对照组存活1只,iTV组、iBM1组各存活2只,iBM2组存活4只,iBM3组存活5只;③外周血常规检查结果显示iBM组白细胞的恢复速度比iTV组和对照组快而且稳定;④移植后存活小鼠骨髓细胞表面CD45标记、DilCM染料示踪研究和βactin均显示人源的标记。结论经iBM途径移植脐血MNC至NOD/SCID小鼠骨髓可以重  相似文献   

11.
We have recently identified a dominant wave of CD4-CD8- (double- negative [DN]) thymocytes in early murine fetal development that express low affinity Fc gamma receptors (Fc gamma RII/III) and contain precursors for Ti alpha/beta lineage T cells. Here we show that Fc gamma RII/III is expressed in very immature CD4low single-positive (SP) thymocytes and that Fc gamma RII/III expression is downregulated within the DN subpopulation and before the CD3-CD8low SP stage in T cell receptor (TCR)-alpha/beta lineage-committed thymocytes. DN Fc gamma RII/III+ thymocytes also contain a small fraction of TCR-gamma/delta lineage cells in addition to TCR-alpha/beta progenitors. Fetal day 15.5 DN TCR-alpha/beta lineage progenitors can be subdivided into three major subpopulations as characterized by cell surface expression of Fc gamma RII/III vs. CD2 (Fc gamma RII/III+CD2-, Fc gamma RII/III+CD2+, Fc gamma RII/III-CD2+). Phenotypic analysis during fetal development as well as adoptive transfer of isolated fetal thymocyte subpopulations derived from C57B1/6 (Ly5.1) mice into normal, nonirradiated Ly5.2 congenic recipient mice identifies one early differentiation sequence (Fc gamma RII/III+CD2(-)-->Fc gamma RII/III+CD2(+)-->Fc gamma RII/III- CD2+) that precedes the entry of DN thymocytes into the CD4+CD8+ double- positive (DP) TCRlow/- stage. Unseparated day 15.5 fetal thymocytes develop into DP thymocytes within 2.5 d and remain at the DP stage for > 48 h before being selected into either CD4+ or CD8+ SP thymocytes. In contrast, Fc gamma RII/III+CD2- DN thymocytes follow this same developmental pathway but are delayed by approximately 24 h before entering the DP compartment, while Fc gamma RII/III-CD2+ display accelerated development by approximately 24 h compared with total day 15.5 thymocytes. Fc gamma RII/III-CD2+ are also more developmentally advanced than Fc gamma RII/III+CD2- fetal thymocytes with respect to their TCR beta chain V(D)J rearrangement. At day 15.5 in gestation, beta chain V(D)J rearrangement is mostly, if not entirely, restricted to the Fc gamma RII/III-CD2+ subset of DN fetal thymocytes. Consistent with this analysis in fetal thymocytes, > 90% of adult thymocytes derived from mice carrying a disrupting mutation at the recombination- activating gene 2 locus (RAG-2-/-) on both alleles are developmentally arrested at the DN CD2- stage. In addition, there is a fivefold increase in the relative percentage of thymocytes expressing Fc gamma RII/III in TCR and immunoglobulin gene rearrangement-incompetent homozygous RAG-2-/- mice (15% Fc gamma RII/III+) versus rearrangement- competent heterozygous RAG-2+/- mice (< 3% Fc gamma RII/III+). Thus, Fc gamma RII/III expression defines an early DN stage preceding V beta(D beta)I beta rearrangement, which in turn is followed by surface expression of CD2. Loss of Fc gamma RII/III and acquisition of CD2 expression characterize a late DN stage immediately before the conversion into DP thymocytes.  相似文献   

12.
背景:造血干细胞来源目前包括骨髓干细胞、外周血干细胞和脐带血干细胞,寻找新的干细胞来源以满足临床移植需要一直是人们的希望。从妊娠第5周起,肝脏中发育成完善的血窦系统,此后造血干细胞就可以随血液流动迁移。目的:观察人胎儿血造血干/祖细胞的生物学特性并对其进行非肥胖糖尿病/重症联合免疫缺陷小鼠移植。设计:对照实验。单位:广西医科大学第一附属医院血液科。对象:①细胞来源:21例胎儿血标本取自胎龄为18~29周[(24.2±3.2)周]死亡胎儿及21例足月脐带血标本取自广西医科大学第一附属医院产科2002-10/2003-02。所取的血标本均取得其家属的知情同意。②实验动物:非肥胖糖尿病/重症联合免疫缺陷小鼠12只,6~7周龄,雌性,无菌饲养于超净工作台中。方法:采用流式细胞术,检测胎儿血的造血干/祖细胞表面标志,包括CD34,CD38,HLA-DR及CD90,同时与21例足月儿脐血作比较。并将人胎血单个核细胞移植给6只经亚致死量照射的非肥胖糖尿病/重症联合免疫缺陷小鼠,5周后观察其植入情况,采用流式细胞术检测小鼠骨髓中人白细胞的含量,以及采用聚合酶链反应检测小鼠骨髓中的人Cart-1基因。主要观察指标:①胎血和脐血造血干/祖细胞表面标志的表达情况。②将胎血细胞移植给非肥胖糖尿病/重症联合免疫缺陷小鼠的植入情况。结果:①人胎血中CD34 细胞的百分率显著高于足月脐血[(2.2588±0.7209)%,(1.5729±0.4783)%,P=0.0004],CD34 CD38-细胞和CD34 CD90 细胞的百分率也均显著高于足月脐血[(1.2986±0.4706)%,(0.8710±0.4095)%,P=0.0016;(0.9300±0.4692)%,(0.5600±0.3658)%,P=0.0324]。②6例胎血中的4例可顺利重建经亚致死量照射的非肥胖糖尿病/重症联合免疫缺陷小鼠的造血,移植后5周在小鼠骨髓中仍可检测到人的白细胞和人Cart-1基因。结论:人胎儿血中有比足月脐血更高含量的造血干/祖细胞,其单个核细胞能植入非肥胖糖尿病/重症联合免疫缺陷小鼠骨髓,并重建髓、淋巴系全面造血。胎儿血有望成为多能造血干细胞来源。  相似文献   

13.
In addition to the major intrathymic pathway of T cell differentiation, extrathymic pathways of such differentiation have been shown to exist in the liver and intestine. In particular, hepatic T cells of T cell receptors or CD3 of intermediate levels (i.e., intermediate T cell receptor cells) always contain self-reactive clones and sometimes appear at other sites, including the target tissues in autoimmune diseases and the tumor sites in malignancies. To prove their extrathymic origin and self reactivity, in this study we used thymectomized, irradiated (B6 x C3H/He) F1 mice subjected to transplantation of bone marrow cells of B6 mice. It was clearly demonstrated that all T cells generated under athymic conditions in the peripheral immune organs are intermediate CD3 cells. In the case of nonthymectomized irradiated mice, not only intermediate CD3 cells but also high CD3 cells were generated. Phenotypic characterization showed that newly generated intermediate CD3 cells were unique (e.g., interleukin 2 receptor alpha-/beta+ and CD44+ L-selectin-) and were, therefore, distinguishable from thymus-derived T cells. The precursor cells of intermediate CD3 cells in the bone marrow were Thy-1+ CD3-. The extrathymic generation of intermediate CD3 cells was confirmed in other combinations of bone marrow transplantation, C3H --> C3H and B10.Thy1.1 --> B6.Thy1.2. The generated intermediate CD3 cells in the liver contained high levels of self-reactive clones estimated by anti-V beta monoclonal antibodies in conjunction with the endogenous superantigen minor lymphocyte-stimulating system, especially the combination of B6 --> (B6 x C3H/He) (graft-versus-host- situation).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The transgenic mice were produced by injecting eggs of B6 and C3H/HeJ mice with the human E mu-myc gene. Preferential development of B lymphomas was observed in the B6 transgenic mice, whereas the C3H/HeJ transgenic mice developed mostly T lymphomas. The phenotypic activation of B lineage cells but not of T lineage cells was detected in the prelymphomatous transgenic mice of both strains. The transgene was similarly expressed in B and T cells of the transgenic mice of both strains. These results suggest that a high incidence of T lymphomas in the C3H/HeJ transgenic mice may not be due to the preferential activation of or the preferential E mu-myc expression in T lymphocytes. When the bone marrow or fetal liver cells from the prelymphomatous transgenic mice of both strains were transferred into irradiated normal C3H/HeJ mice, most of the recipients developed T lymphomas. Moreover, even when irradiated B6 mice received the hematopoietic stem cells from the prelymphomatous B6 transgenic mice, the incidence of T lymphoma increased up to 50%. These findings suggest that B6 and C3H/HeJ mice might provide the environment that supports the development or growth of B and T lymphomas, respectively, and that such an environment could be modified by irradiation of the mice.  相似文献   

15.
Ex vivo expansion of bone marrow (BM) mononuclear cells (MNC) in a perfused culture system produces stem-progenitor cell type(s) in sufficient number(s) for hematopoietic reconstitution. The limitations in using fresh BM MNC for ex vivo expansion include additional cell processing and inflexibility in patient treatment. Cryopreservation of whole bone marrow (WBM) eliminates processing costs of MNC or CD34+ cell selection and allows for flexibility in patient treatment. We developed a convenient system to cryopreserve and thaw small volume WBM aspirations (n = 13) and then compared the expandability of unprocessed normal cryopreserved/thawed (C/T) WBM to that of fresh BM MNC cultured in the presence of erythropoietin, PIXY 321, and Flt3-ligand. Ex vivo expansion potential was retained in WBM aspirates after C/T. When initiated with 225 million viable nucleated cells, clinical scale expansion cultures (n = 6) yielded 9.7+/-2.8 x 10(8) total cells, which contained 10.4+/-5.8 x 10(6) colony-forming units-granulocyte-macrophage (CFU-GM), 1.3+/-1.4 x 10(4) LTCIC, and 2.2 x 10(6) CD34+Lin- cells, sufficient cell numbers for clinical use. These studies demonstrate that ex vivo perfusion culture expansion of unfractionated C/T WBM (< or =30 ml) provides doses of stem-progenitor cells similar in composition to expanded fresh BM MNC, previously demonstrated to achieve hematopoietic reconstitution.  相似文献   

16.
Previous work had revealed that a CD34- fibroblast-like cell is the earliest hematopoietic progenitor population. This cell type is able to differentiate into hematopoietic progeny of all lineages and circulates in the peripheral blood, from where it can be isolated by IL-6-mediated plastic adherence. We isolated peripheral blood-derived mononuclear cells (MNC) from male CBA mice and established in vitro a fibroblast-like, adherent growing cell layer. Cells were immortalized by SV-40 transfection for cellular cloning. Monoclonal fibroblast-like cell clones were established, and the surface expression of early stem cell markers was determined by flow cytometry. Clones were CD34-, Sca-1+, Thy-1(low), and c-kit+. Lethally irradiated female CBA mice were successfully transplanted with a fibroblast-like cell clone, R-M26/2-1. After syngeneic transplantation, peripheral blood counts were back to normal in transplanted mice on days 15-20, and fluorescence in situ hybridization (FISH) revealed the sole presence of male hematopoietic cells in the BM of female recipients at weeks 7, 9, 11, and 16 after transplantation. Immunohistochemistry for the expression of CD34, Sca-1, Thy-1, and c-kit showed the presence of the phenotype of the transplanted stem cell clone along the bone spicules in the marrow cavity, giving rise to HPC of all lineages. In summary, we have shown that a CD34-, Sca-1+, Thy-1(low), and c-kit+ fibroblast-like cell is consistent with the phenotype of the earliest hematopoietic and repopulating stem cell and can be isolated from peripheral blood cells.  相似文献   

17.
Pre-B cell lines proliferating for several months on stromal cells in the presence of interleukin 7 (IL-7) were established from fetal liver of (NZB x NZW)F1 mice. They express the B lineage-specific markers PB76, B220, and VpreB, but do not express surface immunoglobulin (sIg). Upon removal of IL-7 from the culture, they differentiate to sIg+ B cells that can then be stimulated by lipopolysaccharide to become IgM-secreting cells. Transfer of these pre-B cell lines into SCID mice leads to hypergammaglobulinemia of IgM (600-900 micrograms/ml), IgG2a (1-3 mg/ml), and IgG3 (300-500 micrograms/ml) for the next 3-5 mo. The spleen appears populated with (NZB x NZW)F1-derived pre-B cells, few B cells, and many IgM and/or IgG-producing plasma cells. In contrast, SCID mice populated with pre-B cell lines of normal (C57BL/6 x DBA/2)F1 mouse fetal liver develop normal levels of serum IgM (approximately 100-300 micrograms/ml), almost no detectable levels of IgG, and no plasma cell hyperplasia. The (NZB x NZW)F1 pre-B cell-populated SCID mice contain elevated serum titers of IgG antinuclear autoantibodies, but no retroviral gp70-specific nor erythrocyte-specific autoantibodies. Up to 20% of the SCID mice develop proteinuria as a consequence of IgG deposits in the kidney glomeruli during a 7-mo period of observation. All signs of autoimmune disease seen in these mice are independent of the sex of the SCID host. This experimental system provides a distinction between the disease-determining (NZB x NZW)F1 genes, which are expressed in the B lymphocyte lineage and cause the development of the disease, from those expressed in other cell lineages which only modulate its progression.  相似文献   

18.
A single embryonic stem cell (ESC) line can be repetitively cryopreserved, thawed, expanded, and differentiated into various cellular components serving as a potentially renewable and well-characterized stem cell source. Therefore, we determined whether ESCs could be used to reconstitute marrow and blood in major histocompatibility complex (MHC)-mismatched mice. To induce differentiation toward hematopoietic stem cells (HSCs) in vitro, ESCs were cultured in methylcellulose with stem cell factor, interleukin (IL)-3, and IL-6. ESC-derived, cytokine-induced HSCs (c-kit+/CD45+) were isolated by flow cytometry and injected either intra bone marrow or intravenously into lethally irradiated MHC-mismatched recipient mice. From 2 wk to 6 mo after injection, the peripheral blood demonstrated increasing ESC-derived mononuclear cells that included donor-derived T and B lymphocytes, monocytes, and granulocytes without clinical or histologic evidence of graft-versus-host disease (GVHD). Mixed lymphocyte culture assays demonstrated T cell tolerance to both recipient and donor but intact third party proliferative responses and interferon gamma production. ESCs might be used as a renewable alternate marrow donor source that reconstitutes hematopoiesis with intact immune responsiveness without GVHD despite crossing MHC barriers.  相似文献   

19.
A minor subpopulation of adult murine thymocytes (less than 5%) that is Lyt-2-, L3T4-, and expresses low levels of Ly-1 (designated dLy-1 [dull] thymocytes) has been identified, isolated, and characterized. This study assesses the differentiation potential of dLy-1 thymocytes in the thymus in vivo. Using multiparameter flow cytometry, radiation chimeras of C57BL/6 mice congenic at the Ly-1 or Ly-5 locus, and allelic markers to discriminate host and donor, we showed that transferred dLy-1 cells were able to generate thymocytes expressing both cortical and medullary phenotypes in a sequential manner. The proportion of donor-derived thymocytes obtained was directly related to the number of dLy-1 thymocytes transferred. Transfer of purified Lyt-2+ or Lyt-2+ + L3T4+ thymocytes, which constitute greater than 94% of total thymocytes, failed to generate any donor-derived thymocytes in irradiated recipients. Transfer of bone marrow (BM) cells produced the same sequential pattern of differentiation as that produced by dLy-1 cells, but was delayed by 4-5 d. Transferred dLy-1 thymocytes exhibited a limited capacity for self-renewal, and resulted in a single wave of differentiation in irradiated hosts. Thus, thymic repopulation by donor-derived cells after transfer of dLy-1 thymocytes was transient, while repopulation by BM was permanent. These findings suggest that the isolated dLy-1 thymocytes described herein are precursor thymocytes that represent a very early stage in intrathymic development.  相似文献   

20.
Tolerance to Mlsa has been shown to be associated with clonal deletion of cells carrying TCR beta chain variable regions V beta 6 or V beta 8.1 in mice possessing I-E antigens. To evaluate the rules of tolerance induction to Mlsa we prepared irradiation bone marrow chimeras expressing Mlsa or Mlsb and I-E by different cell types. Deletion of V beta 6+, Mlsa-reactive T cells required the presence of Mlsa and I-E products either on bone marrow-derived cells or on irradiated recipient cells. Tolerance was induced when Mlsa and I-E were expressed by distinct cells of the chimera. Also neonatally tolerized mice exhibited depletion of V beta 6+ cells after injection of I-E- Mlsa spleen cells (DBA/1) into newborn I-E+ Mlsb mice (BALB/c x B10.G)F1. These results suggest that the product of the Mlsa locus is soluble and/or may be transferred from cell to cell and bound to I-E antigens. The chimera experiments also showed that tolerance to Mlsa is H-2 allele independent, i.e., is apparently unrestricted. Differentiation of chimeric (H-2d/Mlsa x H-2q/Mlsb)F1 stem cells in either an H-2d or an H-2q thymus revealed that tolerance assessed by absence of V beta 6+ T cells is not dependent on the thymically determined restriction specificity of T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号