首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Rapid-rate repetitive transcranial magnetic stimulation (rTMS) can produce a lasting increase in cortical excitability in healthy subjects or induce beneficial effects in patients with neuropsychiatric disorders; however, the conditioning effects of rTMS are often subtle and variable, limiting therapeutic applications. Here we show that magnitude and direction of after-effects induced by rapid-rate rTMS depend on the state of cortical excitability before stimulation and can be tuned by preconditioning with transcranial direct current stimulation (tDCS). METHODS: Ten healthy volunteers received a 20-sec train of 5-Hz rTMS given at an intensity of individual active motor threshold to the left primary motor hand area. This interventional protocol was preconditioned by 10 min of anodal, cathodal, or sham tDCS. We used single-pulse TMS to assess corticospinal excitability at rest before, between, and after the two interventions. RESULTS: The 5-Hz rTMS given after sham tDCS failed to produce any after-effect, whereas 5-Hz rTMS led to a marked shift in corticospinal excitability when given after effective tDCS. The direction of rTMS-induced plasticity critically depended on the polarity of tDCS conditioning. CONCLUSIONS: Preconditioning with tDCS enhances cortical plasticity induced by rapid-rate rTMS and can shape the direction of rTMS-induced after-effects.  相似文献   

2.
Modulation of activity in the left temporoparietal area (LTA) by 10 Hz repetitive transcranial magnetic stimulation (rTMS) results in a transient reduction of tinnitus. We aimed to replicate these results and test whether transcranial direct current stimulation (tDCS) of LTA could yield similar effect. Patients with tinnitus underwent six different types of stimulation in a random order: 10-Hz rTMS of LTA, 10-Hz rTMS of mesial parietal cortex, sham rTMS, anodal tDCS of LTA, cathodal tDCS of LTA and sham tDCS. A non-parametric analysis of variance showed a significant main effect of type of stimulation ( P  = 0.002) and post hoc tests showed that 10-Hz rTMS and anodal tDCS of LTA resulted in a significant reduction of tinnitus. These effects were short lasting. These results replicate the findings of the previous study and, in addition, show preliminary evidence that anodal tDCS of LTA induces a similar transient tinnitus reduction as high-frequency rTMS.  相似文献   

3.
OBJECTIVE: To investigate the changes in cortical excitability of the human motor cortex induced by high-frequency repetitive transcranial magnetic stimulation (rTMS) of different stimulation durations. METHODS: Twenty healthy subjects participated in the study. Subjects received 20 trains of 10-Hz rTMS at 80% of the resting motor threshold (RMT) intensity with two different stimulation durations (5 and 1.5s) over the motor hot spot for left first dorsal interosseous (FDI) muscle. Electromyographic responses (motor-evoked potentials, MEPs) to single-pulse stimulation, and intracortical inhibition (ICI) and intracortical facilitation (ICF) by paired-pulse stimulation were measured bilaterally in the relaxed FDI muscles before, immediately after, and 30, 60, 90 and 120 min after rTMS. RESULTS: After 5s of 10-Hz rTMS, the mean amplitude of MEP for the stimulated M1 cortex decreased for up to 90min (P=0.002) and that of the unstimulated M1 cortex decreased for up to 60 min (P=0.008). Enhancement of ICI and suppression of ICF were observed and sustained for more than 90 min in both stimulated (P=0.001) and unstimulated (P=0.003) M1 cortex after 5s of 10-Hz rTMS. After 1.5s of 10-Hz rTMS, the mean amplitude of MEP increased in stimulated cortex for up to 120 min (P=0.005). CONCLUSIONS: With different stimulation durations, high-frequency subthreshold rTMS can produce different patterns of long-lasting changes in corticospinal and intracortical excitability in stimulated and unstimulated motor cortex in healthy subjects. SIGNIFICANCE: The results have important implications for the selection of stimulation parameters other than the frequency of rTMS. The clinical application of rTMS for the purpose of motor enhancement should be considered along with the mechanism of different stimulation parameters.  相似文献   

4.
Electrical stimulation of deep brain structures, such as globus pallidus and subthalamic nucleus, is widely accepted as a therapeutic tool for patients with Parkinson's disease (PD). Cortical stimulation either with epidural implanted electrodes or repetitive transcranial magnetic stimulation can be associated with motor function enhancement in PD. We aimed to study the effects of another noninvasive technique of cortical brain stimulation, transcranial direct current stimulation (tDCS), on motor function and motor-evoked potential (MEP) characteristics of PD patients. We tested tDCS using different electrode montages [anodal stimulation of primary motor cortex (M1), cathodal stimulation of M1, anodal stimulation of dorsolateral prefrontal cortex (DLPFC), and sham-stimulation] and evaluated the effects on motor function--as indexed by Unified Parkinson's Disease Rating Scale (UPDRS), simple reaction time (sRT) and Purdue Pegboard test--and on corticospinal motor excitability (MEP characteristics). All experiments were performed in a double-blinded manner. Anodal stimulation of M1 was associated with a significant improvement of motor function compared to sham-stimulation in the UPDRS (P < 0.001) and sRT (P = 0.019). This effect was not observed for cathodal stimulation of M1 or anodal stimulation of DLPFC. Furthermore, whereas anodal stimulation of M1 significantly increased MEP amplitude and area, cathodal stimulation of M1 significantly decreased them. There was a trend toward a significant correlation between motor function improvement after M1 anodal-tDCS and MEP area increase. These results confirm and extend the notion that cortical brain stimulation might improve motor function in patients with PD.  相似文献   

5.
Recent studies have shown that repetitive transcranial magnetic stimulation (rTMS) over the premotor cortex (PM) modifies the excitability of the ipsilateral primary motor cortex (M1). Transcranial direct current stimulation (tDCS) is a new method to induce neuroplasticity in humans non-invasively. tDCS generates neuroplasticity directly in the cortical area under the electrode, but might also induce effects in distant brain areas, caused by activity modulation of interconnected areas. However, this has not yet been tested electrophysiologically. We aimed to study whether premotor tDCS can modify the excitability of the ipsilateral M1 via cortico-cortical connectivity. Sixteen subjects received cathodal and anodal tDCS of the PM and eight subjects of the dorsolateral prefrontal cortex. Premotor anodal, but not premotor cathodal or prefrontal tDCS, modified selectively short intracortical inhibition/intracortical facilitation (SICI/ICF), while motor thresholds, single test-pulse motor-evoked potential and input–output curves were stable throughout the experiments. Specifically, anodal tDCS decreased intracortical inhibition and increased paired-pulse excitability. The selective influence of premotor tDCS on intracortical excitability of the ipsilateral M1 suggests a connectivity-driven effect of tDCS on remote cortical areas. Moreover, this finding indirectly substantiates the efficacy of tDCS to modulate premotor excitability, which might be of interest for applications in diseases accompanied by pathological premotor activity.  相似文献   

6.
《Brain stimulation》2022,15(5):1254-1268
Transcranial direct current stimulation (tDCS) has been used for over twenty years to modulate cortical (particularly motor corticospinal) excitability both during (online) and outlasting (offline) the stimulation, with the former effects associated to the latter. However, tDCS effects are highly variable, partially because stimulation intensity is commonly not adjusted individually (in contrast to transcranial magnetic stimulation, TMS). In Experiment 1, we therefore explored an empirical approach of personalizing tDCS intensity for the primary motor cortex (M1) based on dose-response curves (DRCs), individually relating tDCS Intensity (in steps from 0.3 to 2.0 mA) and Polarity (anodal, cathodal) to the online modulation of concurrent TMS motor evoked potentials (MEP), assessing DRC reliability across two separate days. No robust DRCs could be observed, neither at the individual nor at the group level, with the only robust effect being a (paradoxical) MEP facilitation during cathodal tDCS at 2.0 mA, but no modulation at traditional intensities of or near 1 mA. In Experiment 2, we therefore attempted to replicate the classical bidirectional online MEP modulation during 1 mA tDCS that had been reported by several of the early seminal tDCS papers. We either closely recreated stimulation parameters and temporal protocol of these original studies (Experiment 2A) or slightly modernized them according to current standards (Experiment 2B). In neither experiment did we observed any significant online MEP modulation. We conclude that an empirical titration of individually effective tDCS intensities may not be feasible as online tDCS effects do not appear to be sufficiently robust.  相似文献   

7.
《Brain stimulation》2014,7(1):113-121
In this study we tested the hypothesis whether a lasting change in the excitability of cortical output circuits can be obtained in healthy humans by combining a peripheral nerve stimulation during a concomitant depolarization and/or hyperpolarization of motor cortex. To reach this aim we combined two different neurophysiological techniques each of them able to induce a lasting increase of cortical excitability by them self: namely median nerve repetitive electrical stimulation (rEPNS) and transcranial direct current stimulation (tDCS). Ten normal young volunteers were enrolled in the present study. All subjects underwent five different protocols of stimulation: (1, 2) tDCS alone (anodal or cathodal); (3) Sham tDCS plus rEPNS; (4, 5) anodal or cathodal tDCS plus rEPNS. The baseline MEP amplitude from abductor pollicis brevis (APB) and flexor carpi radialis (FCR) muscle, the FCR H-reflex were compared with that obtained immediately after and 10, 20, 30, 60 min after the stimulation protocol. Anodal tDCS alone induced a significant transient increase of MEP amplitude immediately after the end of stimulation while anodal tDCS + rEPNS determined MEP changes which persisted for up 60 min. Cathodal tDCS alone induced a significant reduction of MEP amplitude immediately after the end of stimulation while cathodal tDCS + rEPNS prolonged the effects for up to 60 min. Sham tDCS + rEPNS did not induce significant changes in corticospinal excitability. Anodal or cathodal tDCS + rEPNS and sham tDCS + rEPNS caused a lasting facilitation of H-reflex. These findings suggest that by providing afferent input to the motor cortex while its excitability level is increased or decreased by tDCS may be a highly effective means for inducing an enduring bi-directional plasticity. The mechanism of this protocol may be complex, involving either cortical and spinal after effects.  相似文献   

8.
To investigate whether a period of 1 Hz repetitive transcranial magnetic stimulation (rTMS) over M1 preconditioned by tDCS improves bradykinesia of the upper limb in Parkinson’s disease (PD). Fifteen patients with PD performed index finger, hand tapping and horizontal pointing movements as well as reach-to-grasp movements with either hand before (baseline conditions) and after a period of 1 Hz rTMS preconditioned by (1) sham, (2) anodal or (3) cathodal tDCS over the primary motor cortex contralateral to the more affected body side. Movement kinematics was analysed using an ultrasound-based motion analyser at baseline, immediately after and 30 min after each stimulation session. Dopaminergic medication was continued. Compared to baseline, 1 Hz rTMS significantly increased the frequency of index finger and hand tapping as well as horizontal pointing movements performed with the contralateral hand. Movement frequency increased up to 40% over 30 min after cessation of the stimulation. Preconditioning with cathodal tDCS, but not with anodal tDCS, reduced the effectiveness of 1 Hz rTMS to improve tapping and pointing movements. There was no significant increase of movement frequencies of the ipsilateral hand induced by 1 Hz rTMS preconditioned by either tDCS session. Movement kinematics of reach-to-grasp movements were not significantly influenced by either stimulation session. In PD the beneficial effects of 1 Hz rTMS over the primary motor cortex on bradykinesia of simple finger, hand and pointing movements is reduced by preconditioning with cathodal tDCS, but not with anodal tDCS. Preconditioning with tDCS is a powerful tool to modulate the behavioural effect of 1 Hz rTMS over the primary motor cortex in PD.  相似文献   

9.
The threshold and direction of excitability changes induced by low- and high-frequency repetitive transcranial magnetic stimulation (rTMS) in the primary motor cortex can be effectively reverted by a preceding session of transcranial direct current stimulation (tDCS), a phenomenon referred to as “metaplasticity”. Here, we used a combined tDCS–rTMS protocol and visual evoked potentials (VEPs) in healthy subjects to provide direct electrophysiological evidence for metaplasticity in the human visual cortex. Specifically, we evaluated changes in VEPs at two different contrasts (90 and 20 %) before and at different time points after the application of anodal or cathodal tDCS to occipital cortex (i.e., priming), followed by an additional conditioning with low- or high-frequency rTMS. Anodal tDCS increased the amplitude of VEPs and this effect was paradoxically reverted by applying high-frequency (5 Hz), conventionally excitatory rTMS (p < 0.0001). Similarly, cathodal tDCS led to a decrease in VEPs amplitude, which was reverted by a subsequent application of conventionally inhibitory, 1 Hz rTMS (p < 0.0001). Similar changes were observed for both the N1 and P1 component of the VEP. There were no significant changes in resting motor threshold values (p > 0.5), confirming the spatial selectivity of our conditioning protocol. Our findings show that preconditioning primary visual area excitability with tDCS can modulate the direction and strength of plasticity induced by subsequent application of 1 or 5 Hz rTMS. These data indicate the presence of mechanisms of metaplasticity that keep synaptic strengths within a functional dynamic range in the human visual cortex.  相似文献   

10.
Shortly after the application of weak transcranial direct current stimulation (tDCS) to the animal and human brain, changes in corticospinal excitability, which mainly depend on polarity, duration and current density of the stimulation protocol, have been reported. In humans, anodal tDCS has been reported to enhance motor‐evoked potentials (MEPs) elicited by transcranial brain stimulation while cathodal tDCS has been shown to decrease them. Here we investigated the effects produced by tDCS on mice motor cortex. MEPs evoked by transcranial electric stimulation were recorded from forelimbs of 12 C57BL/6 mice, under sevofluorane anaesthesia, before and after (0, 5 and 10 min) anodal and cathodal tDCS (tDCS duration 10 min). With respect to sham condition stimulation (anaesthesia), MEP size was significantly increased immediately after anodal tDCS, and was reduced after cathodal tDCS (~20% vs. sham). Both effects declined towards basal levels in the following 10 min. Although the site and mechanisms of action of tDCS need to be more clearly identified, the directionality of effects of tDCS on mice MEPs is consistent with previous findings in humans. The feasibility of tDCS in mice suggests the potential applicability of this technique to assess the potential therapeutic options of brain polarization in animal models of neurological and neuropsychiatric diseases.  相似文献   

11.
A significant proportion of the population suffers from tinnitus, a bothersome auditory phantom perception that can severely alter the quality of life. Numerous experimental studies suggests that a maladaptive plasticity of the auditory and limbic cortical areas may underlie tinnitus. Accordingly, repetitive transcranial magnetic stimulation (rTMS) has been repeatedly used with success to reduce tinnitus intensity. The potential of transcranial direct current stimulation (tDCS), another promising method of noninvasive brain stimulation, to relieve tinnitus has not been explored systematically. In a double-blind, placebo-controlled and balanced order design, 20 patients suffering from chronic untreatable tinnitus were submitted to 20 minutes of 1 mA anodal, cathodal and sham tDCS targeting the left temporoparietal area. The primary outcome measure was a change in tinnitus intensity or discomfort assessed with a Visual Analogic Scale (VAS) change-scale immediately after tDCS and 1 hour later. Compared to sham tDCS, anodal tDCS significantly reduced tinnitus intensity immediately after stimulation; whereas cathodal tDCS failed to do so. The variances of the tinnitus intensity and discomfort VAS change-scales increased dramatically after anodal and cathodal tDCS, whereas they remained virtually unchanged after sham tDCS. Moreover, several patients unexpectedly reported longer-lasting effects (at least several days) such as tinnitus improvement, worsening, or changes in tinnitus features, more frequently after real than sham tDCS. Anodal tDCS is a promising therapeutic tool for modulating tinnitus perception. Moreover, both anodal and cathodal tDCS seem able to alter tinnitus perception and could, thus, be used to trigger plastic changes.  相似文献   

12.
Acute and chronic effects of ethanol on cortical excitability.   总被引:1,自引:0,他引:1  
OBJECTIVE: We designed this study to find out whether 5Hz repetitive transcranial magnetic stimulation (rTMS) would disclose changes in cortical plasticity after acute intake of ethanol and in patients with chronic alcohol consumption. METHODS: Ten stimuli-5Hz-rTMS trains were applied over the primary motor cortex in 10 healthy subjects before and after acute ethanol intake and in 13 patients with chronic ethanol abuse, but negative blood ethanol levels when studied. The motor evoked potential (MEP) amplitude and the cortical silent period (CSP) duration during the course of rTMS trains were measured. Short-interval intracortical inhibition (3ms) and intracortical facilitation (10ms) were studied by paired-pulse TMS in 4 healthy subjects and 4 patients. RESULTS: In healthy subjects before and after acute ethanol intake, 5Hz-rTMS produced a significant increase in the MEP size and CSP duration during rTMS. The first CSP in the train was significantly longer after than before ethanol intake. In patients 5Hz-rTMS failed to produce the normal MEP facilitation but left the CSP increase unchanged. CONCLUSIONS: Acute and chronic ethanol intake alters cortical excitability and short-term plasticity of the primary motor cortex as tested by the MEP size facilitation and CSP lengthening after 5Hz-rTMS. SIGNIFICANCE: This finding suggests that rTMS is a valid tool for investigating the effects of ethanol on cortical plasticity in humans.  相似文献   

13.
Purposeful manipulation of cortical plasticity and excitability within somatosensory regions may have therapeutic potential. Non-invasive brain stimulation (NBS) techniques such as transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) have shown promise towards this end with certain NBS protocols augmenting somatosensory processing and others down-regulating it. Here, we review NBS protocols which, when applied to primary somatosensory cortex, facilitate cortical excitability and tactile acuity (i.e., high-frequency repetitive TMS (rTMS), intermittent theta burst stimulation (TBS), paired associative stimulation (PAS) N20-5 to 0, anodal tDCS), and protocols that inhibit the same (i.e., low-frequency rTMS, continuous TBS, PAS N20-20, cathodal tDCS). Other studies have targeted multisensory regions of the brain to modulate somatosensory processing. These studies in full present a wide array of strategies in which NBS can be utilized to influence somatosensory processing in a behaviorally and clinically relevant capacity.  相似文献   

14.
The posterior parietal cortex is part of the cortical network involved in motor learning and is structurally and functionally connected with the primary motor cortex (M1). Neuroplastic alterations of neuronal connectivity might be an important basis for learning processes. These have however not been explored for parieto‐motor connections in humans by transcranial direct current stimulation (tDCS). Exploring tDCS effects on parieto‐motor cortical connectivity might be functionally relevant, because tDCS has been shown to improve motor learning. We aimed to explore plastic alterations of parieto‐motor cortical connections by tDCS in healthy humans. We measured neuroplastic changes of corticospinal excitability via motor evoked potentials (MEP) elicited by single‐pulse transcranial magnetic stimulation (TMS) before and after tDCS over the left posterior parietal cortex (P3), and 3 cm posterior or lateral to P3, to explore the spatial specificity of the effects. Furthermore, short‐interval intracortical inhibition/intracortical facilitation (SICI/ICF) over M1, and parieto‐motor cortical connectivity were obtained before and after P3 tDCS. The results show polarity‐dependent M1 excitability alterations primarily after P3 tDCS. Single‐pulse TMS‐elicited MEPs, M1 SICI/ICF at 5 and 7 ms and 10 and 15 ms interstimulus intervals (ISIs), and parieto‐motor connectivity at 10 and 15 ms ISIs were all enhanced by anodal stimulation. Single pulse‐TMS‐elicited MEPs, and parieto‐motor connectivity at 10 and 15 ms ISIs were reduced by cathodal tDCS. The respective corticospinal excitability alterations lasted for at least 120 min after stimulation. These results show an effect of remote stimulation of parietal areas on M1 excitability. The spatial specificity of the effects and the impact on parietal cortex–motor cortex connections suggest a relevant connectivity‐driven effect.  相似文献   

15.
Transcranial magnetic stimulation (TMS) was employed to probe the modulatory effects of transcranial direct current stimulation of motor cortex on motor evoked responses (MEPs) produced during motor imagery. MEP amplitudes at rest and during motor imagery were assessed before and for a period of 60 min after transcranial direct current stimulation (tDCS) applied over the primary motor cortex at 1 mA for 5 min. Cathodal stimulation induced a decrease of about 30% of MEP amplitude at rest and a 50% reduction of MEP size during imagery. Ten minutes after tDCS, MEPs at rest returned to baseline values while MEPs during motor imagery were suppressed for up to 30 min. No changes in MEP amplitude during imagery were found after anodal stimulation. tDCS could represent a powerful tool to modulate the excitability of motor areas involved in mental practice and motor imagery.  相似文献   

16.
Hypokinetic gait is a common and very disabling symptom of Parkinson’s disease (PD). Repetitive transcranial magnetic stimulation (rTMS) over the motor cortex has been used with variable effectiveness to treat hypokinesia in PD. Preconditioning rTMS by transcranial direct current stimulation (tDCS) may enhance its effectiveness to treat hypokinetic gait in PD. Three-dimensional kinematic gait analysis was performed (1) prior to, (2) immediately after and (3) 30 min after low-frequency rTMS (1 Hz, 900 pulses, 80 % of resting motor threshold) over M1 contralateral to the more affected body side preconditioned by (1) cathodal, (2) anodal or (3) sham tDCS (amperage: 1 mA, duration: 10 min) in ten subjects with PD (7 females, mean age 63 ± 9 years) and ten healthy subjects (four females, mean age 50 ± 11 years). The effects of tDCS-preconditioned rTMS on gait kinematics were assessed by the following parameters: number of steps, step length, stride length, double support time, cadence, swing and stance phases. Our data suggest a bilateral improvement of hypokinetic gait in PD after 1 Hz rTMS over M1 of the more affected body side preceded by anodal tDCS. In contrast, 1 Hz rTMS alone (preceded by sham tDCS) and 1 Hz rTMS preceded by cathodal tDCS were ineffective to improve gait kinematics in PD. In healthy subjects, gait kinematics was unaffected by either intervention. Preconditioning motor cortex rTMS by tDCS is a promising approach to treat hypokinetic gait in PD.  相似文献   

17.
OBJECTIVE: In this study, we tested the excitability of cortical motor areas in patients with Alzheimer's disease. Because repetitive transcranial magnetic stimulation (rTMS) modulates cortical excitability, possibly by inducing a short-term increase in synaptic efficacy, we used rTMS to investigate motor cortex excitability in patients with Alzheimer's disease. METHODS: We tested the changes in the size and threshold of motor evoked potential (MEP) and cortical silent period (CSP) duration evoked by focal rTMS delivered in 10 trains of 10 stimuli at 5Hz frequency and 120% rMth intensity in a group of patients with Alzheimer's disease, and age-matched controls. In a further session, rTMS was also delivered at 1Hz frequency (trains of 10 stimuli, 120% rMth). RESULTS: Whereas in control subjects, 5Hz-rTMS elicited normal MEPs that progressively increased in size during the train, in patients, it elicited MEPs that decreased in size. The increase in the duration of the CSP was similar in patients and healthy controls. One hertz rTMS left the MEP amplitude unchanged in patients and healthy controls. CONCLUSIONS: The lack of MEP facilitation reflects an altered response to 5Hz-rTMS in patients with Alzheimer's disease. SIGNIFICANCE: Our rTMS findings strongly suggest an altered cortical plasticity in excitatory circuits within motor cortex in patients with Alzheimer's disease.  相似文献   

18.
BackgroundTranscranial direct current stimulation (tDCS) is a neuromodulatory technique with the potential to enhance the efficacy of traditional therapies such as neuromuscular electrical stimulation (NMES). Yet, concurrent application of tDCS/NMES may also activate homeostatic mechanisms that block or reverse effects on corticomotor excitability. It is unknown how tDCS and NMES interact in the human primary motor cortex (M1) and whether effects are summative (increase corticomotor excitability beyond that of tDCS or NMES applied alone) or competitive (block or reduce corticomotor excitability effects of tDCS or NMES applied alone).ObjectiveTo investigate corticomotor excitability in response to NMES after concurrent application of tDCS protocols that enhance (anodal tDCS) or suppress (cathodal tDCS) excitability of M1.MethodsWe used transcranial magnetic stimulation (TMS) to examine corticomotor excitability before and after the concurrent application of: i) NMES with anodal tDCS; and ii) NMES with cathodal tDCS. Effects were contrasted to four control conditions: i) NMES alone, ii) anodal tDCS alone, iii) cathodal tDCS alone, and iv) sham stimulation.ResultsConcurrent application of two protocols that enhance excitability when applied alone (NMES and anodal tDCS) failed to induce summative effects on corticomotor excitability, as predicted by homeostatic plasticity mechanisms. Combined cathodal tDCS and NMES suppressed the enhanced excitation induced by NMES, an effect that might be explained by calcium dependent anti-gating models.ConclusionsThese novel findings highlight the complex mechanisms involved when two neuromodulatory techniques are combined and suggest that careful testing of combined interventions is necessary before application in clinical contexts.  相似文献   

19.
ObjectiveTo investigate changes in cortical excitability and short-term synaptic plasticity we delivered 5 Hz repetitive transcranial magnetic stimulation (rTMS) over the primary motor cortex in 11 patients with mild-to-moderate Alzheimer’s disease (AD) before and after chronic therapy with rivastigmine.MethodsResting motor threshold (RMT), motor evoked potential (MEP), cortical silent period (CSP) after single stimulus and MEP facilitation during rTMS trains were tested three times during treatment. All patients underwent neuropsychological tests before and after receiving rivastigmine. rTMS data in patients were compared with those from age-matched healthy controls.ResultsAt baseline, RMT was significantly lower in patients than in controls whereas CSP duration and single MEP amplitude were similar in both groups. In patients, rTMS failed to induce the normal MEP facilitation during the trains. Chronic rivastigmine intake significantly increased MEP amplitude after a single stimulus, whereas it left the other neurophysiological variables studied unchanged. No significant correlation was found between patients’ neuropsychological test scores and TMS measures.ConclusionsChronic treatment with rivastigmine has no influence on altered cortical excitability and short-term synaptic plasticity as tested by 5 Hz-rTMS.SignificanceThe limited clinical benefits related to cholinesterase inhibitor therapy in patients with AD depend on factors other than improved plasticity within the cortical glutamatergic circuits.  相似文献   

20.
Repetitive transcranial magnetic stimulation (rTMS) over primary motor cortex (M1) elicits changes in motor evoked potential (MEP) size thought to reflect short‐ and long‐term forms of synaptic plasticity, resembling short‐term potentiation (STP) and long‐term potentiation/depression (LTP/LTD) observed in animal experiments. We designed this study in healthy humans to investigate whether STP as elicited by 5‐Hz rTMS interferes with LTP/LTD‐like plasticity induced by intermittent and continuous theta‐burst stimulation (iTBS and cTBS). The effects induced by 5‐Hz rTMS and iTBS/cTBS were indexed as changes in MEP size. We separately evaluated changes induced by 5‐Hz rTMS, iTBS and cTBS applied alone and those induced by iTBS and cTBS delivered after priming 5‐Hz rTMS. Interactions between 5‐Hz rTMS and iTBS/cTBS were investigated under several experimental conditions by delivering 5‐Hz rTMS at suprathreshold and subthreshold intensity, allowing 1 and 5 min intervals to elapse between 5‐Hz rTMS and TBS, and delivering one and ten 5‐Hz rTMS trains. We also investigated whether 5‐Hz rTMS induces changes in intracortical excitability tested with paired‐pulse transcranial magnetic stimulation. When given alone, 5‐Hz rTMS induced short‐lasting and iTBS/cTBS induced long‐lasting changes in MEP amplitudes. When M1 was primed with 10 suprathreshold 5‐Hz rTMS trains at 1 min before iTBS or cTBS, the iTBS/cTBS‐induced after‐effects disappeared. The 5‐Hz rTMS left intracortical excitability unchanged. We suggest that STP elicited by suprathreshold 5‐Hz rTMS abolishes iTBS/cTBS‐induced LTP/LTD‐like plasticity through non‐homeostatic metaplasticity mechanisms. Our study provides new information on interactions between short‐term and long‐term rTMS‐induced plasticity in human M1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号