首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three new triterpenoid saponins, julibrosides A5–A7 (1–3), together with five known saponins (4–8), were isolated from the stem bark of Albizia julibrissin. Their structures were elucidated on the basis of extensive spectroscopic data analysis of MS, 1D and 2D NMR, and chemical methods. Compounds 7 and 8 were isolated from the genus Albizia for the first time. The new compounds showed no cytotoxicity and anti-inflammatory activity.  相似文献   

2.
In the last few years, much effort has been directed towards the synthesis of selective adenosine receptor (AR) antagonists since they are attractive tools for pharmacological intervention in many pathophysiological conditions. During our studies aimed at obtaining new nonclassical adenosine antagonists devoid of phosphodiesterase (PDE) inhibition, a series of 2-pyridones and 2,5-quinolinediones (3af, 5af, 6a,c–f) has been synthesized as potential AR ligands. Binding affinities of the new compounds were determined for bovine and human adenosine A1, A2A, and A3 receptors. Compound 5f showed good affinity (K i = 7.8 μM) towards human A1AR but no selectivity (K i = 7.0 μM) towards human A2AAR, whereas compound 6f showed more affinity towards human A2A (K i = 16 μM) than A1 receptor (percentage inhibition at 10 μM concentration = 11). In the 1–100 μM range, the new compounds did not inhibit cardiac PDE3 activity at all. Molecular modeling studies carried out on 5f and 6f support the pharmacological results and suggest 6f as a potential lead compound selective towards A2AAR.  相似文献   

3.
4.
Summary 8-Cyclopentyl-1,3-dipropylxanthine (PD 116,948) is a very potent, very A1-selective adenosine antagonist, with a K i of 0.46 nM in 3H-CHA binding to A1 receptors in rat whole brain membranes and 340 nM in 3H-NECA binding to A2 receptors in rat striatal membranes. Its 740-fold A1-selectivity is the highest reported for an adenosine antagonist. 3H-PD 116,948 (117 Ci/mmol) was prepared by reduction of the diallyl analog. 3H-PD 116,948 bound to a single site in rat whole brain membranes, with a B max of 46 pmol/g wet weight and K d of 0.42 nM. Nonspecific binding was extremely low, amounting to about 3% of total binding under standard conditions and less than 1 % when higher tissue concentrations were used. Affinities of compounds for inhibition of 3H-PD 116,948 binding were highly consistent with an A1 adenosine receptor. Antagonists were equally potent in 3H-PD 116,948 binding and in 3H-CHA binding, while agonists were consistently about 12-fold more potent in 3H-CHA binding. Hill coefficients were 1.0 for antagonists and about 0.65 for agonists. 3H-PD 116,948 should be a useful antagonist ligand for adenosine A1 receptors. Send offprint request toR. F. Bruns at above address  相似文献   

5.
Ischemic stroke is a complex systemic disease characterized by high morbidity, disability, and mortality. The activation of the presynaptic adenosine A2A and A1 receptors modifies a variety of brain insults from excitotoxicity to stroke. Therefore, the discovery of dual A2A/A1 adenosine receptor (AR)-targeting therapeutic compounds could be a strategy for the treatment of ischemic stroke. Inspired by two clinical phase III drugs, ASP-5854 (dual A2A/A1 AR antagonist) and preladenant (selective A2A AR antagonist), and using the hybrid medicinal strategy, we characterized novel pyridone-substituted triazolopyrimidine scaffolds as dual A2A/A1 AR antagonists. Among them, compound 1a exerted excellent A2A/A1 AR binding affinity (Ki = 5.58/24.2 nM), an antagonistic effect (IC50 = 5.72/25.9 nM), and good metabolic stability in human liver microsomes, rat liver microsomes, and dog liver microsomes. Importantly, compound 1a demonstrated a dose–effect relationship in the oxygen-glucose deprivation/reperfusion (OGD/R)-treated HT22 cell model. These findings support the development of dual A2A/A1 AR antagonists as a potential treatment for ischemic stroke.  相似文献   

6.
The present study was undertaken to evaluate the contractile response of several E- and F-ring isoprostanes (IsoP) in human umbilical vein (HUV) and to investigate the role of the endothelium on the effect of 15-E2t-IsoP, the most potent vasoconstrictor isoprostane, in human vessels. HUV rings with or without endothelium were suspended in an organ bath for recording the isometric tension in response to different agonists. The inhibitors to be evaluated were applied 30 min before the addition of the agonist. All of the compounds tested produced concentration-dependent contractions when tested on HUV rings with endothelium. Although these compounds were equieffective, significant differences were observed in their potency, with U46619 being the most potent followed by 15-E2t-IsoP > 15-E1t-IsoP = 15-F2t-IsoP > 15-F1t-IsoP = 9-epi-15-F2t-IsoP in descending rank order of potency. 15-E2t-IsoP was the most potent of the isoprostanes evaluated and, therefore, the one employed in the present study. When intact endothelium HUV rings were used, 15-E2t-IsoP-induced contraction was unaffected by the endothelin-converting enzyme inhibitor, phosphoramidon (10 μM), suggesting that short-term endothelin-1 release is not involved in this response. However, the non-selective cyclooxygenase (COX) inhibitor, indomethacin (10 and 30 μM), and the COX-2 selective inhibitor, NS-398 (3, 10 and 30 μM) produced inhibitory effects on 15-E2t-IsoP-induced contraction of HUV rings with endothelium. These results indicate that COX-derived contractile prostanoids are involved in this effect. Furthermore, the apparent pK b values estimated for indomethacin (5.5) and NS-398 (5.4) suggest that the prostanoids involved are derived from the COX-2 isoenzyme pathway. On HUV rings with endothelium, the phospholipase A2 inhibitor, oleyloxyethyl phosphorylcholine (30 and 100 μM), induced an inhibitory effect on 15-E2t-IsoP-induced contraction, suggesting that the phospholipase A2 pathway is also involved in this effect. In addition, the thromboxane A2 synthase inhibitor furegrelate (10 and 30 μM) also inhibited 15-E2t-IsoP-induced contraction of HUV rings with endothelium, indicating that thromboxane A2 is one of the contractile prostanoids involved in this response. Endothelium denudation clearly diminished the vasoconstrictor potency of 15-E2t-IsoP, demonstrating that the endothelium releases a vasoconstrictor factor in response to 15-E2t-IsoP. The absence of an inhibitory effect at the highest concentration of furegrelate (30 μM) on 15-E2t-IsoP-induced contraction of HUV rings without endothelium suggested that endothelium is the source of thromboxane A2. We conclude that prostanoids derived from the COX-2 isoenzyme pathway participate in 15-E2t-IsoP-induced vasoconstriction of isolated HUV rings. Our results also indicate that endothelial thromboxane A2 is one of the prostanoids involved in this effect.  相似文献   

7.
A new minor sesquiterpene lactone glucoside, ixerin ZA (1), together with 16 known compounds, were isolated from the whole plants of Ixeris sonchifolia (Bge) Hance. The structure of 1 was elucidated as 1(10),3,11(13)-guaiatriene-12,6-olide-2-one-3-O-[6′-(p-metheoxyphenylacetyl)]-β-glucopyranoside on the basis of spectroscopic and chemical evidence. Compound 1 exhibited an inhibitory effect on K562 cells.  相似文献   

8.
Background: The challenges in developing any A1 adenosine receptor (A1-AdoR) agonist involve having the desired effect on target tissue while avoiding side effects due to activation of A1-AdoR on other tissues. A1-AdoR de-sensitization leading to tachyphylaxis is also another challenge. Objectives: The major goal of this review is twofold: to highlight the structure affinity relationships (SAR) of A1-AdoR agonists, starting with initial lead compounds that were the genesis for second-generation compounds with high selectivity, affinity, and partial agonism; and to give an overview of the A1-AdoR agonists under development for various indications. Results: Intense efforts by many pharmaceutical companies and academicians in the A1-AdoR agonist field have led to the discovery of clinical candidates for the following conditions: atrial arrhythmias – Tecadenoson, Selodenoson and PJ-875; type 2 diabetes (T2D) and insulin-sensitizing agents – GR79236, ARA, and CVT-3619; pain management – SDZ WAG 994, GW493838; and angina – BAY-68-4986. For the i.v. antiarrhythmic agents that act as ventricular rate control agents, a selective response can be accomplished by careful dosing paradigms. The treatment of T2D using A1-AdoR agonists has been met by limited success due to cardiovascular side effects and well-defined desensitization of full agonists in both animal models and human trials (GR79236 and ARA). However, new partial A1-AdoR agonists are in development, including CVT-3619 (hA1-AdoR Ki = 55 nm, selectivity A2A > 200; A2B > 1000; A3 > 20, CV Therapeutics), that have the potential to provide enhanced insulin sensitivity without cardiovascular side effects or tachyphylaxis. The A1-AdoR agonists GW493838 and GR792363 are under evaluation for pain management. The non-nucleosidic A1-AdoR agonist, BAY-68-4986 (Capadenoson), represents a unique approach to angina wherein both animal studies and early human studies are promising. Conclusion: The challenges associated with developing an A1-AdoR agonist for therapeutic intervention are now well defined in humans. Significant progress has been made in identifying agents for the treatment of atrial arrhythmias, T2D, and angina.  相似文献   

9.
Summary We investigated the negative chronotropic and vasodilating properties of new selective A1 and A2 adenosine agonists such as 2-chloro-N6-cyclopentyladenosine (CCPA) and 2-hexynyl-5-N-ethyl-carboxamidoadenosine (2-hexynyl-NECA) as compared with reference adenosine analogues. The potency of these compounds on heart rate was assessed in the rat atrial preparation and their activity on the vascular tone was determined in both rat aorta and bovine coronary artery. CCPA was found to be the most potent At agonist of those currently available in producing negative chronotropic effects (EC50 = 8.2 nM). The A1 antagonist 8-cyclopentyl-1,3-dipropyl-xanthine (DPCPX) blocked CCPA activity in a dose-dependent manner. There was also a significant correlation between its biological effect and the affinity for A1 receptors as measured in the rat brain by [3H]-N6-cyclohexyladenosine (3[H]-CHA) binding. The A2 selective agonist 2-hexynyl-NECA showed vasodilating properties comparable with those observed with the reference compounds, CGS 21680 and NECA. EC50 values were 596 and 569 nM in rat aorta and bovine coronary artery, respectively. Moreover, the rank order of potency was similar in the two vascular districts examined, suggesting that the rat aorta is a useful model for studying the effects of adenosine derivatives on vascular tone. In addition, the potency of the compounds in inducing vasodilation was found to be correlated with their affinity for A2 receptors as measured in the rat striatum by 3[H]-CGS 21680 binding.These data further support that A1 receptors are involved in depressing cardiac activity and A2 receptors in inducing vasorelaxation.Correspondence to A. Conti at the above address  相似文献   

10.
Rationale There is no consensus on the contribution of adenosine A1 and A2A receptor blockade to motor-activating effects of caffeine.Objective Our aim was to use a detailed and continuous observational method to compare the motor effects induced by caffeine with those induced by selective A1 and A2A receptor antagonists.Methods The behavioral repertoire induced by systemic administration of caffeine (3, 10, and 30 mg/kg), A1 receptor antagonist 8-cyclopentyl-1,3-dimethylxanthine (CPT; 1.2, 4.8 and 7.2 mg/kg), and A2A receptor antagonist 3-(3-hydroxypropyl)-8-(m-methoxystyryl)-7-methyl-1-propargylxanthine phosphate disodium salt (MSX-3; 1, 3, and 10 mg/kg) was analyzed. The effects of pretreatment with the selective A1 receptor agonist N 6-cyclopentyladenosine (CPA; 0.1 mg/g) and the selective A2A receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5′-N-ethylcarboxyamidoadenosine (CGS 21680; 0.2 mg/kg) on the pattern of motor activation induced by caffeine, CPT, or MSX-3 were also examined.Results The pattern of behavioral activation induced by caffeine was better mimicked by CPT than by MSX-3. Coadministration of CPT and MSX-3 gave different results depending on the dose and the type of behavioral response. CPA was more effective at decreasing the activating effects of caffeine and CPT than those of CGS 21680. On the other hand, CGS 21680 was more effective at decreasing the activating effects of MSX-3 than those of caffeine or CPT. Factor analysis revealed a complex three-dimensional behavioral profile for caffeine that was similar to the profile for CPT and was different from the profile for MSX-3.Conclusions The results indicate a predominant role for A1 receptors in the motor-activating effects of acutely administered caffeine.  相似文献   

11.
The adenosine receptors (A1, A2A, A2B and A3) are important and ubiquitous mediators of cellular signalling, which play vital roles in protecting tissues and organs from damage. Launched drugs include the adenosine receptor antagonists theophylline and doxofylline (both used as bronchodilators in respiratory disorders such as asthma), while several compounds are presently in clinical trials for a range of indications, including heart failure, Parkinson's disease, rheumatoid arthritis, cancer, pain and chronic obstructive pulmonary disease. A host of companies and institutions are addressing the huge potential for the development of selective adenosine receptor agonists and antagonists, so that it appears we are on the verge of a new wave of compounds approaching the market for many unmet medical needs. This review presents an analysis of the patenting activity in the area for 2006 and an interpretation and reflection on the developments that we can expect in the future.  相似文献   

12.
Age, age-related pathologies, certain psychiatric disorders, head traumas and other conditions are characterised by an impairment of cognitive functions. Cognition is a complex process involving a large number of neurotransmitters that can modulate, positively or negatively, learning and memory; therefore, their receptors may represent suitable targets to develop cognition-enhancing drugs. Among others, the α7 nicotinic cholinergic receptor and the α5 GABAA receptor are emerging as attractive targets for developing therapeutics in this field. The important role of α7 nicotinic receptors has been proven thanks to the discovery of α7-selective agonists, such as GTS-21 and AR-R17779, which has stimulated the synthesis of a large number of new compounds, some of which are in clinical trials. The observation that the classical tranquilliser benzodiazepines (agonists that potentiate GABAA receptor functions), are amnesic, while inverse agonists (that attenuate the functions of the same receptor) improve cognitive tasks, stimulated the search for modulators mainly directed toward the α5-containing GABAA receptor, which seems at present the most important GABAA receptor subtype involved in cognitive processes. This article reviews the patents on modulators of α7 nicotinic acetylcholine and GABAA receptors disclosed during the period 2000 – 2006.  相似文献   

13.
陈关  潘启超 《药学学报》1985,20(5):331-333
3 AB是聚(ADP-R)合成酶抑制剂,能在体外和体内协同地增加平阳霉素对S180的抑制作用,而本身不具有抗瘤与细胞毒作用。这种加强作用与3 AB的剂量有关,剂量加强因子为4。在体内实验中加用3 AB后,平阳霉素对小鼠S180的抑制率由原来的32.3%,41.4%,37.4%和66.0%分别增至60.1%,72.4%,68.3%和77.8%,我们还在体内探讨了量效关系及给药方式的影响。  相似文献   

14.
In this study, we examined the effects of systemic and local administration of the subtype-selective adenosine receptor antagonists PSB-36, PSB-1115, MSX-3, and PSB-10 on inflammation and inflammatory hyperalgesia. Pharmacological blockade of adenosine receptor subtypes after systemic application of antagonists generally led to a decreased edema formation after formalin injection and, with the exception of A3 receptor antagonism, also after the carrageenan injection. The selective A2B receptor antagonist PSB-1115 showed a biphasic, dose-dependent effect in the carrageenan test, increasing edema formation at lower doses and reducing it at a high dose. A1 and A2B antagonists diminished pain-related behaviors in the first phase of the formalin test, while the second, inflammatory phase was attenuated by A2B and A3 antagonists. The A2B antagonist was particularly potent in reducing inflammatory pain dose-dependently reaching the maximum effect at a low dose of 3 mg/kg. Inflammatory hyperalgesia was totally eliminated by the A2A antagonist MSX-3 at a dose of 10 mg/kg. In contrast to the A1 antagonist, the selective antagonists of A2A, A2B, and A3 receptors were also active upon local administration. Our results demonstrate that the blockade of adenosine receptor subtypes can decrease the magnitude of inflammatory responses. Selective A2A antagonists may be useful for the treatment of inflammatory hyperalgesia, while A2B antagonists have potential as analgesic drugs for the treatment of inflammatory pain.  相似文献   

15.
Rationale Current treatments for schizophrenia adequately treat the positive symptoms of schizophrenia but only modestly improve cognitive deficits. This review provides evidence for and against the use of selective 5-HT receptor drugs as cognition enhancing agents for schizophrenia and other disorders.Methods Pre-clinical and clinical literature concerned with the role of the serotonergic system in cognition and memory as it relates to schizophrenia is reviewed. Individual 5-HT receptor subtypes for which selective drugs are available that are likely to improve cognition are reviewed. Recommendations for clinical testing are proposed.Results and conclusions Four 5-HT receptor systems (5-HT1A, 5-HT2A, 5-HT4, 5-HT6) are highlighted as suitable targets for enhancing cognition and memory. Because many clinically available antipsychotic drugs already target 5-HT1A, 5-HT2A and 5-HT6 receptors, design of clinical trials will need to take into account the serotonergic pharmacology of concurrently administered antipsychotic medications. 5-HT1A partial agonists and 5-HT2A antagonists have shown modest effectiveness in improving cognition in schizophrenia. 5-HT6-selective compounds for cognition enhancement are in late-stage clinical trials, while 5-HT4 compounds have not yet been tested in humans for cognition enhancement.Recommendations For stand-alone therapy for enhancing cognition, 5-HT1A partial agonists, 5-HT2A antagonists, 5-HT4 partial agonists and 5-HT6 antagonists are all likely to induce at least modest improvement in cognition in schizophrenia. If add-on therapy is contemplated, antipsychotic drugs with weak affinities for serotonin receptors should be used to avoid confounds. It is likely that serotonergic drugs will soon be available as cognition enhancing medications for disorders other than schizophrenia (e.g. dementia).  相似文献   

16.
Introduction : Adenosine is an endogenous nucleoside that accumulates in the extracellular space in response to metabolic stress and cell damage. Extracellular adenosine is a signaling molecule that signals by activating four GPCRs: the A1, A2A, A2B and A3 receptors. Since the discovery of A3 adenosine receptors, accumulating evidence has identified these receptors as potential targets for therapeutic intervention.

Areas covered : A3 adenosine receptors are expressed on the surface of most immune cell types, including neutrophils, macrophages, dendritic cells, lymphocytes and mast cells. A3 adenosine receptor activation on immune cells governs a broad array of immune cell functions, which include cytokine production, degranulation, chemotaxis, cytotoxicity, apoptosis and proliferation. In accordance with their multitudinous immunoregulatory actions, targeting A3 adenosine receptors has been shown to impact the course of a wide spectrum of immune-related diseases, such as asthma, rheumatoid arthritis, cancer, ischemia and inflammatory disorders.

Expert opinion : Given the existence of both preclinical and early clinical data supporting the utility of A3 adenosine receptor ligands in treating immune-related diseases, further development of A3 adenosine receptor ligands is anticipated.  相似文献   

17.
A basic protein was isolated by CM-Sephadex C-25 chromatography from the venom of Bothrops neuwiedii from Argentina, and named B. neuwiedii myotoxin I. This protein exerted local myotoxic and edema-forming effects in mice, with potencies comparable to other myotoxins isolated from Bothrops spp. venoms. When injected by i.v. route at doses up to 4.7 mg/kg of body weight, the toxin was not lethal. In vitro, the toxin had no detectable phospholipase A2 activity on egg yolk phospholipids. B. neuwiedii myotoxin I appeared as a homodimer in sodium dodecylsulphate–polyacrylamide gel electrophoresis, with a subunit molecular weight of 15 kD. Gel immunodiffusion revealed a pattern of partial antigenic identity between the newly isolated myotoxin and myotoxin II from Bothrops asper venom. The sequence of B. neuwiedii myotoxin I was determined for the first 40 amino acid residues, showing high homology to several class II phospholipase A2 myotoxins of the Lys-49 family from crotalids. Altogether, results suggest that this toxin is a new member of the Lys-49 phospholipase A2-homologues with myotoxic, cytolytic, and edema-inducing activities.  相似文献   

18.
Background: In recent years, a number of companies, universities and other institutions have invested in research on new molecules acting as agonists, antagonists and enhancers on A1 adenosine receptors (ARs) and in the evaluation of their new therapeutic applications. Objective: To review recent patenting activity on this topic. Methods: The first part of this article describes the compounds patented, subdivided by functional activity, and the second part the most relevant therapeutic applications or new uses for A1 AR ligands, with a focus on compounds in or soon to be in clinical trials. Conclusion: Although a number of potential therapeutic applications are proposed in the recent literature, at present, in the authors' opinion, very few A1 ligands are close to coming on the market, probably due to limited selectivity towards the target tissue or organ.  相似文献   

19.
γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter within the CNS. Many drugs, including the benzodiazepines, exert their effects by modulating the GABAA receptor complex, but side effects are common and reflect, in part, poor subunit selectivity. The subunits are arranged into heteropentamers and this produces a rich diversity of GABAA receptor subtypes, which are potential targets for treating a variety of CNS disorders including epilepsy, anxiety and insomnia, as well as for ameliorating deficiencies arising from neurodegeneration, such as cognitive impairment. The identification of new ligands with improved subunit selectivity should reduce or abolish some of the side effects observed with current drugs, such as tolerance, dependence and withdrawal. This article focuses on new ligands that are reported to selectively recognise particular α-subunits of GABAA receptors and may thereby offer improved treatments for CNS disorders. Only patents and literature since 1998 are necessarily included, although some earlier reports and reviews are also cited. Several publications and patent applications since 1998 disclose new compounds that modulate GABAA receptor function without mentioning whether they have α-subunit selectivity; these compounds, like those known to interact with sites on other GABAA subunits (particularly β), are not within the scope of this review.  相似文献   

20.
The present study describes the preparation and binding properties of a new, potent, and selective A2A adenosine receptor (AR) antagonist radioligand, [3H]3-(3-hydroxypropyl)-7-methyl-8-(m-methoxystyryl)-1-propargylxanthine ([3H]MSX-2). [3H]MSX-2 binding to rat striatal membranes was saturable and reversible. Saturation experiments showed that [3H]MSX-2 labeled a single class of binding sites with high affinity (Kd=8.0 nM) and limited capacity (Bmax=1.16 fmol·mg−1 of protein). The presence of 100 μM GTP, or 10 mM magnesium chloride, respectively, had no effect on [3H]MSX-2 binding. AR agonists competed with the binding of 1 nM [3H]MSX-2 with the following order of potency: 5′-N-ethylcarboxamidoadenosine (NECA)>2-[4-(carboxyethyl)phenylethylamino]-5′-N-ethylcarboxamidoadenosine (CGS-21680)>2-chloroadenosine (2-CADO)>N6-cyclopentyladenosine (CPA). AR antagonists showed the following order of potency: 8-(m-bromostyryl)-3,7-dimethyl-1-propargylxanthine (BS-DMPX)>1,3-dipropyl-8-cyclopentylxanthine (DPCPX)>(R)-5,6-dimethyl-7-(1-phenylethyl)-2-(4-pyridyl)-7H-pyrrolo[2,3-d]pyrimidine-4-amine (SH-128)>3,7-dimethyl-1-propargylxanthine (DMPX)>caffeine. The Ki values for antagonists were in accordance with data from binding studies with the agonist radioligand [3H]CGS21680, while agonist affinities were 3–7-fold lower. [3H]MSX-2 is a highly selective A2A AR antagonist radioligand exhibiting a selectivity of at least two orders of magnitude versus all other AR subtypes. The new radioligand shows high specific radioactivity (85 Ci/mmol, 3150 GBq/mmol) and acceptable nonspecific binding at rat striatal membranes of 20–30%, at 1 nM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号