首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 692 毫秒
1.
This study explored the application of chitosan-alginate (CA) and chitosan-pectin (CP) complex films as drug release regulator for the preparation of multiunit controlled-release diclofenac sodium capsules. Pellets containing drug and microcrystalline cellulose, in a ratio of 3:5, were prepared in a fluidized rotary granulator. The pellets were coated with CA, CP, sodium alginate, pectin, and chitosan solutions. The pellets, equivalent to 75 mg drug, were filled into capsules. After 2 h of dissolution test in acidic medium, the amount of the drug released from any preparation was negligible. The pellets were further subject to pH 6.8 phosphate buffer More than 80% drug release at 12 h was observed with the uncoated pellets and those coated with sodium alginate, pectin or chitosan. Both 1% CA and 3% CP coated pellets exhibited drug release profiles similar to that of Voltaren SR75. It was found that approximately 60% and 85% of the drug were released at 12 and 24 h, respectively. Both Differential thermal analysis (DTA) and Fourier transform infrared spectroscopy (FTIR) analyses revealed complex formation between chitosan and these anionic polymers. It could be concluded that CA and CP complex film could be easily applied to diclofenac sodium pellets to control the release of the drug.  相似文献   

2.
Immersion coating of pellets with calcium pectinate and chitosan   总被引:2,自引:0,他引:2  
This study has investigated the potential of immersion coating calcium containing pellet cores first with pectin, and then with two different cross-linkers, calcium or chitosan. The interaction between pectin and calcium, and between pectin and chitosan, are believed to slow down the drug release, and thereby, the coated pellets might possibly be used for colon specific drug delivery. Both the calcium coated pellets and the chitosan coated pellets had a reduced drug release compared to uncoated pellets in 0.1M HCl (1 h) and phosphate buffer pH 6.8 (4 h). The most successful combination had a drug release of only 17% during the entire test period in comparison to the uncoated pellets that had a drug release of 80%. When chitosan was used as a cross-linker, a higher reduction in drug release was obtained than by using calcium as the cross-linker. For the pellets coated with pectin in combination with chitosan, the type of pectin with a degree of methoxylation (DM) of 35 was superior to the pectin type with DM 17. The drug release was further slowed down by choosing a type of chitosan with a high degree of deacetylation (Dda) 89% and by coating at low concentrations (0.1%) in the immersion solution.  相似文献   

3.
Turbidimetric titration revealed that there were electrostatic attractive interactions between citrate and chitosan in the pH region of 4.3-7.6, depending on their degree of ionization. Citrate cross-linked chitosan film was prepared simply by dipping chitosan film into sodium citrate solution. The swelling ratio of citrate/chitosan film was sensitive to pH, ionic strength etc. Under acidic conditions, citrate/chitosan film swelled and even dissociated in the pH less than 3.5, and the model drugs (brilliant blue and riboflavin) incorporated in the film were released quickly (usually within 2 h released completely in simulated gastric fluid at 37 degrees C) while under neutral conditions the swelling ratio of citrate/chitosan film was less significant and the release rate of brilliant blue and riboflavin was low (less than 40% released in simulated intestinal fluid in 24 h). Sodium chloride weakened the electrostatic interaction between citrate and chitosan, and therefore facilitated the film swelling and accelerated drug release. The parameters of film preparation such as citrate concentration, solution pH etc. influencing the film swelling and drug release profiles were examined. The lower concentration and the higher pH of citrate solution resulted in a larger swelling ratio and quicker riboflavin release. To improve the drug controlled release properties of citrate/chitosan film, heparin, pectin and alginate were further coated on the film surface. Among them only the coating of alginate prolonged riboflavin release noticeably (for 80% of drug released the time was extended from 1.5 to 3.5 h with 0.5% w/v alginate used). The results indicated that the citrate/chitosan film was useful in drug delivery such as for the site-specific drug controlled release in stomach.  相似文献   

4.
泮托拉唑钠肠溶微丸的制备   总被引:1,自引:0,他引:1  
以泮托拉唑钠、羟丙甲纤维素、无水碳酸钠、吐温-80、十二烷基磺酸钠和水混合制成主药层包衣溶液.采用流化床包衣技术,对空白丸芯依次包主药层、隔离层和肠溶层,制得泮托拉唑钠肠溶微丸,并优化了处方和工艺.将所得肠溶微丸装入普通胶囊中制成泮托拉唑钠肠溶微丸胶囊,3批制品在pH 6.8磷酸盐缓冲液中45 min时的释放度分别为(97.6±1.1)%、(98.1±1.3)%、(98.4±1.9)%,在0.1 mol/L盐酸中2h时的释放量分别为(2.9±1.7)%、(2.9±1.4)%、(2.3±2.1)%.  相似文献   

5.
Preparation of coated pellets intended for rutin colon delivery, their evaluation in vitro and in vivo in experimental colitis in rats was the purpose of this study. Pellets were obtained using extrusion/spheronization and coated with three types of coatings (caffeic acid/hypromellose/alginic acid; sodium alginate/hypromellose/zinc acetate; sodium alginate/chitosan). Dissolution using buffers of pH values, β-glucosidase and times corresponding to gastrointestinal tract (GIT) was provided. Pellets coated with alginate/chitosan showed low rutin dissolution (12-14%) in upper GIT conditions and fast release (87-89%) under colon conditions; that is a good presumption of intended rutin release. After colitis induction and development, the rats were treated with pellets and rutin solution administered orally, solution also rectally. Colon/body weight ratio, myeloperoxidase activity and histological evaluation were performed. Rutin was able to promote colonic healing at the dose of 10mg/kg: colon/body weight ratio decreased and myeloperoxidase activity was significantly suppressed. Pellets coated with alginate/chitosan applied orally and rutin solution administered rectally showed the best efficacy. The combination of rutin as natural product, mucoadhesive chitosan degraded in the colon and sodium alginate as the main coating substance in the form of pellets create a promising preparation for therapy of this severe illness.  相似文献   

6.
多糖凝胶骨架结肠定位给药缓释系统的体外释放研究   总被引:5,自引:2,他引:5  
焦艳  李高  高春生  梅兴国 《中国药师》2004,7(4):243-246
目的: 筛选多糖材料作为水凝胶骨架,以达到结肠定位释药目的.方法: 选用海藻酸钠、果胶、壳聚糖、瓜木耳胶与药物混和制粒,灌装肠溶或结肠溶胶囊,考察其在人工胃液,人工肠液及人工结肠液中的释放情况.结果: 难溶性药物的海藻酸钠骨架结肠溶胶囊在人工胃液和小肠液中均不释放,人工结肠液中3 h释药低于30%;果胶骨架肠溶胶囊在人工胃液亦不释药,人工肠液中5 h释药仅为15%.水溶性药物在人工肠液中5 h释放可达50%.结论: 难溶性药物的海藻酸钠/结肠溶胶囊和果胶/肠溶胶囊体外释放度结果符合结肠定位的要求,可以作为建立酶触发体外释放评价方法和体内评价的制剂形式.水溶性药物的果胶/肠溶胶囊是较理想的缓释剂型.  相似文献   

7.
The aim of the present study is to develop colon-targeted drug delivery systems for 5-fluorouracil using pectin combined with ethylcellulose as a film coat with fluidized bed coater. Pellets (0.8-1.0 mm in diameter) containing 40% 5-fluorouracil and 60% microcrystalline cellulose were prepared by extrusion and spheronization. Film-coated pellets of 5-fluorouracil containing various proportions (1:0, 0:1, 1:1, 1:2, w/w) of pectin and ethylcellulose (Surelease) were prepared and subjected to in vitro drug release. The amount of 5-fluorouracil released from pellets at different time intervals was estimated by high-performance liquid chromatography. Drug release was assessed using flow testing in the presence and absence of rat caecal contents. The film thickness is expressed as the theoretical percentage of the weight gained (TWG-%) used relative to the weight of the coated pellets. Coated pellets with pectin alone and TWG-20% released 100% of the 5-fluorouracil in the simulated gastric and small intestinal conditions and failed to control the drug release in the first 5 h of the dissolution study in the simulated gastric and small intestinal conditions; while coated pellets with ethylcellulose alone and TWG-20% released 11.7 +/- 0.9% of the 5-fluorourail at the end of 24 h. When the ratio of pectin to Surelease was 1:1 (w/w) and film coat TWG-20%, the release was rapid and was accompanied by splitting of the coat. When the ratio of pectin to Surelease was 1:2 (w/w) and film coat TWG-13% and TWG-20%, the formulations released 9.8 +/- 0.7% and 4.1 +/- 0.4%, respectively, of 5-fluorouracil in the first 5 h of the dissolution study in the simulated gastric and small intestinal conditions. When the dissolution study was continued in simulated colonic fluids (4% w/v rat caecal content medium) for another 19 h, the film coat with the formulations of TWG-13% and TWG-20% released 96 +/- 1.3% and 85.0 +/- 0.3%, respectively, of 5-fluorourail in simulated colonic fluids at the end of 24 h of the dissolution study, whereas in the control study the formulations released 51.4 +/- 1.0% and 34 +/- 0.5%, respectively, of 5-fluorouracil in absence of rat caecal contents at the end of 24 h. The results of the study show that the formulation of TWG-20% (pectin to Surelease 1:2, w/w) is most likely to provide targeting of 5-fluorouracil for local action in the colon, as it released only 4.1 +/- 0.4% of the drug in the simulated gastric and small intestinal conditions, and it released 85.0 +/- 0.3% of 5-fluorourail in simulated colonic fluids at the end of 24 h. The 5-fluorouracil-coated pellets showed no change in physical appearance, drug content, or dissolution pattern after storage at 40 degrees C/75% relative humidity for 6 months. Differential scanning calorimetric study indicated no possibility of interaction between 5-fluorouracil and pectin or other excipients used in the coated pellets.  相似文献   

8.
The aim of this study was to investigate the possibility of producing alginate-based pellets by extrusion/spheronization and also to improve the formation of spherical alginate-based pellets by investigating the effect of additive in granulating liquid on characteristics and drug release from resulting pellets. Two types of sodium alginate (30%) were evaluated in combination with theophylline (20%), microcrystalline cellulose (50%) and different granulation liquids. The pellets were then prepared in a basket extruder, then spheronized and dried. The final products were characterized by morphological examination and drug release study. Different additives in the granulating liquid influenced the ability of the extruded mass to form pellets (the processability) with this technique. However, different sodium alginate types responded to shape modifications to a different extent. Long, dumbbell-shaped pellets were obtained with viscous granulating liquids. However, short, nearly spherical pellets were obtained with watery granulation liquid with calcium chloride that reduced the swelling ability of sodium alginate. Improvements in the pellet characteristics were also dependent on the sodium alginate type employed. Most of pellet formulations released about 75-85% drug within 60min and showed a good fit into both Higuchi and Korsmeyer-Peppas equations. Higher amount of 3% calcium chloride, as a granulating liquid, in the formulation showed higher mean dissolution time resulting from the cross-linking properties of calcium ions to the negative charges of alginate molecules.  相似文献   

9.
陈云 《中国药师》2011,14(1):84-86
目的:制备洛索洛芬钠缓释微丸。方法:采用离心造粒包衣法制备洛索洛芬钠微丸。首先制备微晶纤维素空白母核和洛索洛芬钠含药素丸,并在此基础上进行丙烯酸树脂水分散体(Eudragit NE30D、Eudragit L30D-55)包衣,并对包衣微丸的释药特征进行探讨。结果:微晶纤维素(MCC)空白母核32~40目的收率约78.6%,含药素丸18~24目收率约88.2%,使用Eudragit NE30D和Eudragit L30D-55比例是20:1的包衣液,包衣增重10%。包衣干燥后,即得洛索洛芬钠缓释微丸,洛索洛芬钠缓释胶囊体外释药行为较好地符合Higuchi方程。结论:在优化的工艺条件下可制得表面光滑、圆整度高的洛索洛芬钠缓释微丸。  相似文献   

10.
The objective of this study was to prepare controlled-release pellets containing 0.2 mg tamsulosin hydrochloride using a pelletizer-equipped piston extruder and double-arm counter-rotating rollers with Surelease and sodium alginate. The release of tamsulosin HCl from pellets coated with the commercial aqueous ethylcellulose dispersion (Surelease) was investigated at different coating loads. In addition, the effect of sodium alginate on drug release was investigated by varying the ratio of sodium alginate to microcrystalline cellulose (MCC). Dissolution studies were first performed in 500 mL simulated gastric fluid (pH 1.2) containing 0.003% (w/w) polysorbate 80 and then in simulated intestinal fluids (pH 7.2). The morphology of pellet surfaces and cross sections were examined by scanning electron microscopy (SEM). Apparently, the spherical pellets were prepared using a pelletizer-equipped piston extruder and double-arm counter-rotating rollers. The release profiles of tamsulosin HCl from Surelease-coated pellets were significantly affected by changing the content of Surelease, the pH of the dissolution medium and the ratio of sodium alginate to MCC. The drug release rates not only decreased with increase in the coating load, but also increased when the pH of the dissolution medium was increased from 1.2 to 7.2 regardless of the sodium alginate-to-MCC ratio. Moreover, the drug release rate at pH 7.2 was gradually increased by increasing the ratio of sodium alginate to MCC. SEM showed smooth surfaces of Surelease-coated pellets. These results suggest that Surelease and sodium alginate would be useful excipients in the preparation of controlled-release pellets with the desired release profiles.  相似文献   

11.
The purpose of this study was development of diclofenac sodium extended release compressed matrix pellets and optimization using Generalized Regression Neural Network (GRNN). According to Central Composite Design (CCD), ten formulations of diclofenac sodium matrix tablets were prepared. Extended release of diclofenac sodium was acomplished using Carbopol® 71G as matrix substance. The process of direct pelletisation and subsequently compression of the pellets into MUPS tablets was applied in order to investigate a different approach in formulation of matrix systems and to achieve more control of the process factors over the principal response — the release of the drug. The investigated factors were X1 -the percentage of polymer Carbopol® 71 G and X2- crushing strength of the MUPS tablet. In vitro dissolution time profiles at 5 different sampling times were chosen as responses. Results of drug release studies indicate that drug release rates vary between different formulations, with a range of 1 hour to 8 hours of dissolution. The most important impact on the drug release has factor X1 -the percentage of polymer Carbopol® 71 G. The purpose of the applied GRNN was to model the effects of these two causal factors on the in vitro release profile of the diclofenac sodium from compressed matrix pellets. The aim of the study was to optimize drug release in manner wich enables following in vitro release of diclofenac sodium during 8 hours in phosphate buffer: 1 h: 15–40%, 2 h: 25–60%, 4 h: 35–75%, 8 h: >70%.  相似文献   

12.
Compaction and compression of xanthan gum pellets were evaluated and drug release from tablets made of pellets was characterised. Two types of pellets were prepared by extrusion-spheronisation. Formulations included xanthan gum, at 16% (w/w), diclofenac sodium or ibuprofen, at 10% (w/w), among other excipients. An amount of 500 mg of pellets fraction 1000-1400 microm were compacted in a single punch press at maximum punch pressure of 125 MPa using flat-faced punches (diameter of 1.00 cm). Physical properties of pellets and tablets were analysed. Laser profilometry analysis and scanning electron microscopy of the upper surface and the surface of fracture of tablets revealed that particles remained as coherent individual units after compression process. Pellets were flatted in the same direction of the applied stress evidencing a lost of the original curvature of the spherical unit. Pellets showed close compressibility degrees (49.9% for pellets comprising diclofenac sodium and 48.5% for pellets comprising ibuprofen). Xanthan gum pellets comprising diclofenac sodium experienced a reduction of 65.5% of their original sphericity while those comprising ibuprofen lost 49.6% of the original porosity. Permanent deformation and densification were the relevant mechanisms of compression. Fragmentation was regarded as non-existent. The release of the model drug from both type of tablets revealed different behaviours. Tablets made of pellets comprising ibuprofen released the model drug in a bimodal fashion and the release behaviour was characterised as Case II transport mechanism (release exponent of 0.93). On the other hand, the release behaviour of diclofenac sodium from tablets made of pellets was anomalous (release exponent of 0.70). For the latter case, drug diffusion and erosion were competing mechanisms of drug release.  相似文献   

13.
The aim of the present research work to study the effect of conjugation of the polymer on drug release from the matrix tablets. Sodium alginate L-cysteine conjugate was achieved by covalent attachment of thiol group of L-cysteine with the primary amino group of sodium alginate through the amide bonds formed by primary amino groups of the sodium alginate and the carboxylic acid group of L-cysteine. The synthesised sodium alginate L-cysteine conjugate was characterised by determining of charring point, Fourier transmission-infrared and differential scanning calorimetric analysis. To study the effect of conjugation on drug release pattern, the matrix tablets were prepared using various proportions of sodium alginate and sodium alginate L-cysteine conjugate along with atorvastatin calcium as model drug. The wet granulation technique was adopted and prepared matrix tablets were evaluated for various physical parameters. The in vitro drug release study results suggested that tablet formulated in combination of sodium alginate and sodium alginate L-cysteine conjugate S4 showed 100% after 8 h drug release whereas formulated with only sodium alginate S0 released 40% in 8 h.  相似文献   

14.
The release of metoclopramide hydrochloride (a water-soluble cationic drug) and diclofenac sodium (a sparingly soluble anionic drug) from pellets coated with ethylcellulose from an aqueous ethylcellulose dispersion (Surelease) at different coating loads was investigated. The release rates of each drug decreased as the coating load of Surelease increased. However, despite its lower water solubility, diclofenac sodium was released slightly faster than metoclopramide hydrochloride at equivalent coating loads. Changes in the release rates after curing were more pronounced for metoclopramide hydrochloride and the release rates of diclofenac sodium were lower than those of metoclopramide hydrochloride after curing. Differences between the release behaviour of the two drugs were probably due to an interaction between the cationic metoclopramide and the anionic ammonium oleate present in the Surelease. The slower release of metoclopramide hydrochloride may be due to an in situ formation of a poorly soluble complex of the drug and the ammonium oleate. This complex, because of its large molecular size, may diffuse more slowly through the film, causing a reduction in the release rate of metoclopramide hydrochloride. This interaction may also account for the differences in release characteristics of the drugs after curing. During curing the surfactant, due to its unstable nature in heat, may be converted to its constituent components. The interaction of drug with the surfactant was reduced as the residue of the ammonium oleate decreased during curing. However, a relatively low volume flow rate of air, and therefore, slower removal of ammonia in the modified side-vented Manesty Accela-cota 10 may also have affected the coating process of the pellets.  相似文献   

15.
This study describes the preparation of mucoadhesive alginate/chitosan microparticles containing prednisolone intended for colon-specific delivery. Two methods have been used for the preparation of the particles: the one-step method is the method in which prednisolone was dispersed within sodium alginate solution and this dispersion was then dropped in a solution containing both calcium chloride and chitosan. The two-step method consisted also of the dispersion of prednisolone in alginate solution and then dropping this dispersion into a solution containing calcium chloride, the particles were then transferred to a chitosan solution. The concentration of sodium alginate solution at 2% (w/v), various concentrations of calcium chloride solution (0.5-1.0%, w/v), chitosan solutions (0.5, 1.0 and 1.5%, w/v) and prednisolone drug load (2, 5, 10 and 15%, w/v) have been used. The results for both preparation methods show that the particle size and drug content were mainly depending on the amount of the drug concentration and not the amount of chitosan and calcium chloride. The in vitro mucoadhesive tests for particles prepared from both methods were carried out using the freshly excised gut of pigs. The particles prepared by the one-step method exhibited excellent mucoadhesive properties after 1h test. Increased chitosan concentrations from 0, 0.5, 1.0 to 1.5% (w/v) resulted in 43, 55, 82 and 88% of the particle remaining attached on the gut surface after 1 h, respectively. However, the particles prepared by the two-step method showed significant less mucoadhesion under the same experimental conditions. At chitosan concentrations of 0, 0.5, 1.0 and 1.5% (w/v) the amount of particles remaining attached to the mucosal surface of the pig gut after 1 h was 43, 3, 11 and 11%, respectively. The prednisolone release at a pH of 6.8 after 4 h was between 63 and 79% for the particles prepared by the one-step method and between 57 and 88% for the particles prepared by the two-step method with a prednisolone drug load of 5 and 10% (w/v), respectively. The results show that depending on the preparation method these chitosan coated alginate particles show different mucoadhesiveness whereas their other properties are not statistically significant different.  相似文献   

16.
双氯芬酸钠脉冲控释微丸的研究   总被引:6,自引:1,他引:6  
目的制备双氯芬酸钠脉冲控释微丸(DS-PRP)并考察体内外释药特性。方法采用水溶胀性材料为内包衣溶胀层,乙基纤维素水分散体为外包衣控释层制备DS-PRP,考察影响其体外释药的因素,并进行体内药代动力学研究。结果溶胀层材料类型、溶胀层和控释层包衣厚度、释放介质中十二烷基硫酸钠(SDS)的加入对DS-PRP的释药时滞和释药速率有显著影响,在0.1% SDS溶液中释药时滞t0.1为3.1 h,体内释药时滞tlag为2.8 h,与DS丸芯的相对生物利用度为(91±12)%。结论DS-PRP在体内外均具有脉冲释药特性。  相似文献   

17.
Pellets containing microcrystalline cellulose (MCC), a model drug (theophylline) and a range of levels of sodium alginate (i.e., 10–50% w/w) were prepared by extrusion/spheronization. Two types of sodium alginate were evaluated with and without the addition of either calcium acetate or calcium carbonate (0, 0.3, 3 and 10% w/w). The effects of amount and type of sodium alginate and calcium salts on pellet properties, e.g., size, shape, morphology and drug release behavior, were investigated. Most pellet formulations resulted in pellets of a sufficient quality with respect to size, size distribution and shape. The results showed that the amounts of sodium alginate and calcium salts influenced the size and shape of the obtained pellets. However, different types of sodium alginate and calcium salt responded to modifications to a different extent. A cavity was observed in the pellet structure, as seen in the scanning electron micrographs, resulting from the forces involved in the spheronization process. Most of pellet formulations released about 75–85% drug within 60 min. Incorporation of calcium salts in the pellet formulations altered the drug release, depending on the solubility of the calcium salts used. The drug release data showed a good fit into both Higuchi and Korsmeyer–Peppas equations.  相似文献   

18.
任晓明 《医药导报》2003,22(12):860-861
目的:比较双氯芬酸钠缓释胶囊和布洛芬缓释胶囊治疗类风湿性关节炎的疗效及安全性.方法:采用随机分组的对照方法,将168例患者分为治疗组86例,口服双氯芬酸钠缓释胶囊50 mg,bid,对照组82例,口服布洛芬缓释胶囊300 mg,tid,均以2周为1个疗程.结果:两药均能显著改善类风湿性关节炎的症状,治疗组和对照组总有效率分别为76.74%,63.41%(P>0.05),显效率分别为56.98%,37.80%(P<0.05).不良反应均较轻.结论:双氯芬酸钠缓释胶囊对类风湿性关节炎的疗效优于布洛芬缓释胶囊.  相似文献   

19.
The effects of microwave irradiation on the drug release property of pectinate beads loaded internally with chitosan (chitosan–pectinate beads) were investigated against the pectinate beads and beads coacervated with chitosan externally (pectinate–chitosonium beads). These beads were prepared by an extrusion method using sodium diclofenac as the model water-soluble drug. The beads were subjected to microwave irradiation at 80 W for 5, 10, 21 and 40 min. The profiles of drug dissolution, drug content, drug–polymer interaction and polymer–polymer interaction were determined by drug dissolution testing, drug content assay, drug adsorption study, differential scanning calorimetry (DSC) and Fourier transform infra-red spectroscopy (FTIR) techniques. Treatment of pectinate beads by microwave did not lead to a decrease, but an increase in the extent of drug released at 4 h of dissolution owing to reduced pectin–pectin interaction via the CO moiety of polymer. In addition, the extent of drug released from the pectinate beads could not be reduced merely through the coacervation of pectinate matrix with chitosan. The reduction in the extent of drug released from the pectinate–chitosonium beads required the treatment of these beads by microwave, following an increase in drug–polymer and polymer–polymer interaction in the matrix. The extent of drug released from the pectinate beads was reduced through incorporating chitosan directly into the interior of pectinate matrix, owing to drug–chitosan adsorption. Nonetheless, the treatment of chitosan–pectinate matrix by microwave brought about an increase in the extent of drug released unlike those of pectinate–chitosonium beads. Apparently, the loading of chitosan into the interior of pectinate matrix could effectively retard the drug release without subjecting the beads to the treatment of microwave. The microwave was merely essential to reduce the release of drug from pectinate beads when the chitosan was introduced to the pectinate matrix by means of coacervation. Under the influences of microwave, the drug release property of beads made of pectin and chitosan was mainly modulated via the CH, OH and NH moieties of polymers and drug, with CH functional group purported to retard while OH and NH moieties purported to enhance the drug released from the matrix.  相似文献   

20.
《Drug delivery》2013,20(8):620-630
The purpose of this study is to increase the lag time and prevent release of budesonide, a corticosteroid drug used in Crohn’s disease for the first 5?h and efficiently deliver it to the colon. Eudragit S100 spray-coated capsules and pulsatile systems using tablet plugs of cellulose acetate butyrate (CAB), HPMC K4M, guar gum, and pectin were prepared. Eudragit S100-coated capsules released 80.62% after 5?h. In pulsatile systems, decreasing the ratio of the polymer significantly increased the rate and extent of drug release. Spray-coating with EUD S100 decreased the extent of drug release to 48.41%, 69.94%, 80.58%, and 45.23% in CAB, HPMC K4M, pectin, and guar gum, respectively; however, the entire amount was released in the target area. In the presence of bacterial enzymes, selected formulas showed nearly 100% release. X-ray imaging performed to monitor the capsules throughout the GIT in human volunteers of the capsules and spray-coated pulsatile systems with 25% guar gum in the plug showed bursting in the transverse and ascending colon, respectively. Both formulations showed marked reduction in induced rabbit colitis model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号