首页 | 本学科首页   官方微博 | 高级检索  
     


Biochemical characterization of rhinovirus RNA-dependent RNA polymerase
Authors:Hung Magdeleine  Gibbs Craig S  Tsiang Manuel
Affiliation:Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, USA.
Abstract:Human rhinoviruses (HRV) represent the single most important causative agent of the common cold. The HRV genome encodes an RNA-dependent RNA polymerase (RdRp) designated 3D polymerase that is required for replication of the HRV RNA genome. We have expressed and purified recombinant HRV-16 3D polymerase to near homogeneity from Escherichia coli transformed with an expression plasmid containing the full-length 460 amino acid HRV-16 3D sequence with a methionine at the N-terminus and a glycine-serine linker followed by a 6-histidine affinity tag at the C-terminus. The purified recombinant protein has rifampicin-resistant activity in a poly(A)-dependent poly(U) polymerase assay while corresponding fractions similarly purified from E. coli transformed with an expression plasmid without the HRV-16 3D sequence showed no activity. The optimal conditions for temperature, pH, divalent cations Mg(2+) and Mn(2+), and KCl were determined. The recombinant protein has RNA polymerase activity on homopolymeric templates poly(A) and poly(C) and heteropolymeric RNA templates primed with either RNA or DNA oligonucleotide primers or self-primed by a copy-back mechanism. A unique, secondary structureless heteropolymeric RNA template that is an efficient substrate was developed to facilitate kinetic characterizations of the enzyme. In the presence of Mg(2+), the enzyme displayed strong base and sugar specificity. However, when Mg(2+) was replaced by Mn(2+) specificity for ribonucleotides was lost, utilization of deoxynucleotides became possible and primer-independent activity was observed on the poly(C) template. Zn(2+) was found to inhibit HRV-16 3D polymerase with an IC(50) as low as 0.6 microM by a mechanism distinct from the magnesium ion stimulation. The activity of this 6His-tagged HRV-16 3D polymerase was compared with that of a recombinant HRV-16 3D polymerase expressed without the 6His-tag and was found to be identical. The availability of recombinant rhinovirus RdRp in a purified form will facilitate the structure-function analysis of this enzyme as well as the identification of specific inhibitors to the rhinovirus 3D polymerase that have therapeutic value in the treatment of the common cold.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号