首页 | 本学科首页   官方微博 | 高级检索  
     

基于特征融合的U-Net肺自动分割方法
引用本文:李雪1,2,周金治1,2,莫春梅1,2,余玺1,2. 基于特征融合的U-Net肺自动分割方法[J]. 中国医学物理学杂志, 2021, 0(6): 704-712. DOI: DOI:10.3969/j.issn.1005-202X.2021.06.009
作者姓名:李雪1  2  周金治1  2  莫春梅1  2  余玺1  2
作者单位:1.西南科技大学信息工程学院, 四川 绵阳 621000; 2.特殊环境机器人技术四川省重点实验室, 四川 绵阳 621000
摘    要:目的:将肺部颜色特征与纹理特征融合形成一种更有效的特征,并利用改进的U-Net深度学习网络结构对肺部CT影像进行图像分割以准确提取肺实质区域。方法:使用的CT影像数据来源于LIDC-IDRI数据库,首先通过色彩空间转换、高阶邻域统计的方法分别提取颜色特征和纹理特征,然后采用加权平均直方图融合两类特征,最后将特征输入改进后的U-Net模型,进行1 000次CT扫描测试,以达到完整的肺实质输出。结果:该方法最终的骰子系数、灵敏度、特异性分别为93%、96%和97%。结论:本方法较单一特征分割方法具有较高的分割精度,有效提高肺实质的分割精度,可为后续的肺部疾病自动诊断提供可靠基础,减少临床诊断的成本并节省医生诊断时间。

关 键 词:肺实质  U-Net  自动分割  颜色特征  纹理特征  特征融合

U-Net automatic lung segmentation based on feature fusion
LI Xue1,2,ZHOU Jinzhi1,2,MO Chunmei1,2,YU Xi1,2. U-Net automatic lung segmentation based on feature fusion[J]. Chinese Journal of Medical Physics, 2021, 0(6): 704-712. DOI: DOI:10.3969/j.issn.1005-202X.2021.06.009
Authors:LI Xue1  2  ZHOU Jinzhi1  2  MO Chunmei1  2  YU Xi1  2
Affiliation:1. School of Information Engineering, Southwest University of Science and Technology, Mianyang 621000, China 2. Robot Technology Used for Special Environment Key Laboratory of Sichuan Province, Mianyang 621000, China
Abstract:Abstract: Objective To obtain a type of more effective feature by combining lung color features with texture features, and to accurately extract lung parenchyma by segmenting the lung CT image using improved U-Net deep learning network structure. Methods The CT image data used in the study were derived from LIDC-IDRI dataset. The color features and texture features were firstly extracted through color space conversion and high-order neighborhood statistics. Then, the mean weighted histogram was used to fuse the two types of features and the obtained features were input into the improved U-Net model for 1 000 CT scan tests, thereby achieving a complete lung parenchyma output. Results The Dice coefficient, sensitivity and specificity of the proposed method were 93%, 96% and 97%, respectively. Conclusion The proposed method which has a higher segmentation accuracy than the single feature segmentation method can effectively improve the accuracy of lung parenchyma segmentation and provide a reliable basis for the subsequent automatic diagnosis of lung diseases, thus reducing the cost of clinical diagnosis and shortening the time for diagnosis.
Keywords:Keywords: lung parenchyma U-Net automatic segmentation color feature texture feature feature fusion
本文献已被 CNKI 等数据库收录!
点击此处可从《中国医学物理学杂志》浏览原始摘要信息
点击此处可从《中国医学物理学杂志》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号