首页 | 本学科首页   官方微博 | 高级检索  
     


Relative Resistance of Striatal Neurons Containing Calbindin or Parvalbumin to Quinolinic Acid-Mediated Excitotoxicity Compared to Other Striatal Neuron Types
Authors:Griselle Figueredo-Cardenas  Cynthia L. Harris  Keith D. Anderson  Anton Reiner
Affiliation:Department of Anatomy and Neurobiology, The University of Tennessee, Health Sciences Center, Memphis, Tennessee, 38163
Abstract:To evaluate the relative ability of those striatal neuron types containing calbindin or parvalbumin to withstand a Ca2+-mediated excitotoxic insult, we injected the NMDA receptor-specific excitotoxin quinolinic acid (QA) into the striatum in mature adult rats and 2 months later examined the relative survival of striatal interneurons rich in parvalbumin and striatal projection neurons rich in calbindin. To provide standardization to the survival of striatal neuron types thought to be poor in Ca2+buffering proteins, the survival was compared to that of somatostatin–neuropeptide Y (SS/NPY)-containing interneurons and enkephalinergic projection neurons, which are devoid of or relatively poorer in such proteins. The various neuron types were identified by immunohistochemical labeling for these type-specific markers and their relative survival was compared at each of a series of increasing distances from the injection center. In brief, we found that parvalbuminergic, calbindinergic, and enkephalinergic neurons all showed a generally comparable gradient of neuronal loss, except just outside the lesion center, where calbindin-rich neurons showed significantly enhanced survival. In contrast, striatal SS/NPY interneurons were more vulnerable to QA than any of these three other types. These observed patterns of survival following intrastriatal QA injection suggest that calbindin and parvalbumin content does not by itself determine the vulnerability of striatal neurons to QA-mediated excitotoxicity in mature adult rats. For example, parvalbuminergic striatal interneurons were not impervious to QA, while cholinergic striatal interneurons are highly resistant and SS/NPY+ striatal interneurons are highly vulnerable. Both cholinergic and SS/NPY+ interneurons are devoid of any known calcium buffering protein. Similarly, calbindin does not prevent striatal projection neuron vulnerability to QA excitotoxicity. Nonetheless, our data do suggest that calbindin may offer striatal neurons some protection against moderate excitotoxic insults, and this may explain the reportedly slightly greater vulnerability of striatal neurons that are poor in calbindin to ischemia and Huntington's disease.
Keywords:calcium-binding proteins   neurodegeneration   basal ganglia   glutamate receptors   quinolinic acid
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号