首页 | 本学科首页   官方微博 | 高级检索  
     


Structure-affinity relationships of adenosine A2B receptor ligands
Authors:Beukers Margot W  Meurs Illiana  Ijzerman Adriaan P
Affiliation:Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands. beukers@chem.leidenuniv.nl
Abstract:Many selective and high affinity agonists and antagonists have been developed for the adenosine A(1), A(2A), and A(3) receptors. Very recently such compounds have been identified for the adenosine A(2B) receptors. This review presents an overview of the structure-affinity relationships of antagonists and agonists for this receptor subtype as published in the scientific and patent literature. To date the most selective >370-fold, high affinity adenosine A(2B) receptor antagonist is the xanthine analog, compound 16 (8-(1-(3-phenyl-1,2,4-oxadiazol-5-yl)methyl)-1H-pyrazol-4-yl)-1,3-dipropyl-1H-purine-2,6(3H,7H)-dione). The pyrrolopyrimidine analog OSIP339391 (73) is slightly less selective, 70-fold, but has a higher affinity 0.41 nM compared to 1 nM for compound 16. Other promising classes of compounds with selectivities ranging from 10- to 160-fold and affinities ranging from 3 to 112 nM include triazolo, aminothiazole, quinazoline, and pyrimidin-2-amine analogs. Progress has also been achieved concerning the development of selective high affinity agonists for the adenosine A(2B) receptor. For years the most potent, albeit non-selective adenosine A(2B) receptor agonist was (S)PHPNECA (88). Last year, a new class of non-ribose ligands was reported. Several compounds displayed selectivity with respect to adenosine A(2A) and A(3) receptors. In addition, full and partial agonists for the adenosine A(2B) receptor were identified with EC(50) values of 10 nM (LUF5835, 103) and 9 nM (LUF5845, 105), respectively.
Keywords:adenosine A2B receptor  agonists  antagonists  structure‐affinity relationships
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号