首页 | 本学科首页   官方微博 | 高级检索  
     


Comparison of three accelerated pulse sequences for semiquantitative myocardial perfusion imaging using sensitivity encoding incorporating temporal filtering (TSENSE)
Authors:Weber Stefan  Kronfeld Andrea  Kunz R Peter  Fiebich Martin  Horstick Georg  Kreitner Karl-Friedrich  Schreiber Wolfgang G
Affiliation:Section of Medical Physics, Department of Radiology, Mainz University Medical School, Mainz, Germany. stefanw@uni-mainz.de
Abstract:PURPOSE: To investigate the parallel acquisition technique sensitivity encoding incorporating temporal filtering (TSENSE) with three saturation-recovery (SR) prepared pulse sequences (SR turbo fast low-angle shot [SR-TurboFLASH], SR true fast imaging with steady precession [SR-TrueFISP], and SR-prepared segmented echo-planar-imaging [SR-segEPI]) for semiquantitative first-pass myocardial perfusion imaging. MATERIALS AND METHODS: In blood- and tissue-equivalent phantoms the relationship between signal intensity (SI) and contrast-medium concentration was evaluated for the three pulse sequences. In volunteers, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and normalized upslopes (NUS) were calculated from signal-time curves (STC). Moreover, artifacts, image noise, and overall image quality were qualitatively evaluated. RESULTS: Phantom data showed a 40% increased linear range of the relation between SI and contrast-medium concentration with TSENSE. In volunteers, TSENSE introduced significantly residual artifacts and loss in SNR and CNR. No differences were found for NUS values with TSENSE. SR-TrueFISP yielded highest SNR, CNR, and quality scores. However, in SR-True-FISP images, dark-banding artifacts were most pronounced. NUS values obtained with SR-TrueFISP were significantly higher and with SR-segEPI significantly lower than with SR-TurboFLASH. CONCLUSION: Semiquantitative myocardial perfusion imaging can significantly benefit from TSENSE due to shorter acquisition times and increased linearity of the pulse sequences. Among the three pulse sequences tested, SR-TrueFISP yielded best image quality. SR-segEPI proved to be an interesting alternative due to shorter acquisition times, higher linearity and fewer dark-banding artifacts.
Keywords:magnetic resonance imaging  myocardial perfusion  parallel imaging  TSENSE
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号