Abstract: | The cerebellum is a central organ in the control of motor learning and performance. In this respect, the cellular plasticity model systems of multiple climbing fiber elimination and long-term depression have been intensively studied. The signalling pathways involved in these plastic changes are now well understood on a molecular level and protein kinase C (PKC) activity appears to be crucially involved in both processes. Furthermore, as shown in recent studies, Purkinje cell dendritic development also critically depends on the activity of PKC. Thereby, the Ca(2+)-dependent PKC subtypes, activated by synaptic inputs through metabotropic glutamate receptors, trigger functional changes as well as long-term anatomical maturation of the Purkinje cell dendritic tree during cerebellar development at different time levels. This review summarizes these findings and forwards the hypothesis of a link between the functional mechanisms underlying LTD and the differentiation of Purkinje cell dendrites. |