首页 | 本学科首页   官方微博 | 高级检索  
     


Evaluation of an integrated in vitro-in silico PBPK (physiologically based pharmacokinetic) model to provide estimates of human bioavailability
Authors:Cai Hongliang  Stoner Chad  Reddy Anita  Freiwald Sascha  Smith Danielle  Winters Roger  Stankovic Charles  Surendran Narayanan
Affiliation:Discovery-ADME Technology, Ann Arbor, MI 48105, USA. hongliang.cai@pfizer.com
Abstract:PK express module is a physiologically based model of first pass metabolism, which integrates in vitro data with an in silico physiologically based pharmacokinetic (PBPK) model to predict human bioavailability (F(H)). There are three required inputs: FDp (Fraction dose absorbed, final parameter from iDEA absorption module), protein binding (fu) and disappearance kinetics in human hepatocytes. Caco-2 permeability, aqueous solubility (at multiple pH's), estimated dose and chemical structure are inputs required for the estimation of FDp (Norris et al., 2000; Stoner et al., 2004) and were determined for all compounds in our laboratory or obtained from literature. Protein binding data was collected from literature references and/or Pfizer database. Human hepatocyte data was generated in-house using an automated human hepatocyte method (using Tecan Genesis Workstation) as described previously (). Sixteen compounds (commercial and Pfizer compounds) were chosen to evaluate the PK express model and the bioavailability predicted from the module was compared with known clinical endpoints. For majority of the 16 compounds (approximately 80%), the PK express model F(H) values were comparable to the known human bioavailability (F(H)) (within 23.7 units of the known human (true) F, except for PF 3, PF 4, PF 6). In conclusion, the PK express model integrates a number of key readily available discovery parameters and provides estimates of human performance by integrating in silico and experimental variables built on a physiological based pharmacokinetic model. Information from this model in conjunction with other ADME data (e.g., P450 inhibition) will enable progression of most promising compounds for further in vivo PK and/or efficacy studies.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号