摘 要: | AIM To investigate the antitumor activity of α-hederin in hepatocellular carcinoma(HCC) cells and its underlying mechanisms in vitro and in vivo.METHODS SMMC-7721, Hep G-2 and Huh-7 HCC cells were cultured in vitro and treated with α-hederin(0, 5 μmol/L, 10 μmol/L, 15 μmol/L, 20 μmol/L, 25 μmol/L, 30 μmol/L, 35 μmol/L, 40 μmol/L, 45 μmol/L, 50 μmol/L, 55 μmol/L, or 60 μmol/L) for 12 h, 24 h, or 36 h, and cell viability was then detected by the Cell Counting Kit-8. SMMC-7721cells were treated with 0, 5 μmol/L, 10 μmol/L, or 20 μmol/L α-hederin for 24 h with or without DL-buthionineS,R-sulfoximine(2 mmol/L) or N-acetylcysteine(5 mmol/L) pretreatment for 2 h, and additional assays were subsequently performed. Apoptosis was observed after Hoechst staining. Glutathione(GSH) and adenosine triphosphate(ATP) levels were measured using GSH and ATP Assay Kits. Intracellular reactive oxygen species(ROS) levels were determined by measuring the oxidative conversion of 2',7'-dichlorofluorescin diacetate. Disruption of the mitochondrial membrane potential was evaluated using JC-1 staining. The protein levels of Bax, Bcl-2, cleaved caspase-3, cleaved caspase-9, apoptosis-inducing factor and cytochrome C were detected by western blotting. The antitumor efficacy of α-hederin in vivo was evaluated in a xenograft tumor model.RESULTS The α-hederin treatment induced apoptosis of HCC cells. The apoptosis rates in the control, low-dose α-hederin(5 μmol/L), mid-dose α-hederin(10 μmol/L) and highdose α-hederin(20 μmol/L) groups were 0.90% ± 0.26%, 12% ± 2.0%, 21% ± 2.1% and 37% ± 3.8%, respectively(P 0.05). The α-hederin treatment reduced intracellular GSH and ATP levels, induced ROS, disrupted the mitochondrial membrane potential, increased the protein levels of Bax, cleaved caspase-3, cleaved caspase-9, apoptosis-inducing factor and cytochrome C, and decreased Bcl-2 expression. The α-hederin treatment also inhibited xenograft tumor growth in vivo. CONCLUSION The α-hederin saponin induces apoptosis of HCC cells via the mitochondrial pathway mediated by increased intracellular ROS and may be an effective treatment for human HCC.
|