首页 | 本学科首页   官方微博 | 高级检索  
检索        


A neurobehavioral systems analysis of adult rats exposed to methylazoxymethanol acetate on E17: implications for the neuropathology of schizophrenia.
Authors:Holly Moore  J David Jentsch  Mehdi Ghajarnia  Mark A Geyer  Anthony A Grace
Institution:Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. hm2035@columbia.edu
Abstract:BACKGROUND: As a test of plausibility for the hypothesis that schizophrenia can result from abnormal brain, especially cerebral cortical, development, these studies examined whether, in the rat, disruption of brain development initiated on embryonic day (E) 17, using the methylating agent methylazoxymethanol acetate (MAM), leads to a schizophrenia-relevant pattern of neural and behavioral pathology. Specifically, we tested whether this manipulation leads to disruptions of frontal and limbic corticostriatal circuit function, while producing schizophrenia-like, region-dependent reductions in gray matter in cortex and thalamus. METHODS: In offspring of rats administered MAM (22 mg/kg) on E17 or earlier (E15), regional size, neuron number and neuron density were determined in multiple brain regions. Spontaneous synaptic activity at prefrontal cortical (PFC) and ventral striatal (vSTR) neurons was recorded in vivio. Finally, cognitive and sensorimotor processes mediated by frontal and limbic corticostriatal circuits were assessed. RESULTS: Adult MAM-E17-exposed offspring showed selective histopathology: size reductions in mediodorsal thalamus, hippocampus, and parahippocampal, prefrontal, and occipital cortices, but not in sensory midbrain, cerebellum, or sensorimotor cortex. The prefrontal, perirhinal, and occipital cortices showed increased neuron density with no neuron loss. The histopathology was accompanied by a disruption of synaptically-driven "bistable membrane states" in PFC and vSTR neurons, and, at the behavioral level, cognitive inflexibility, orofacial dyskinesias, sensorimotor gating deficits and a post-pubertal-emerging hyper-responsiveness to amphetamine. Earlier embryonic MAM exposure led to microcephaly and a motor phenotype. CONCLUSIONS: The "MAM-E17" rodent models key aspects of neuropathology in circuits that are highly relevant to schizophrenia.
Keywords:Frontal cortex  hippocampus  sensorimotor gating  reversal learning  schizophrenia  amphetamine
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号