首页 | 本学科首页   官方微博 | 高级检索  
     


4E-BP2–dependent translation in parvalbumin neurons controls epileptic seizure threshold
Authors:Vijendra Sharma,Rapita Sood,Danning Lou,Tzu-Yu Hung,Maxime Lé  vesque,Yelin Han,Jeremy Y. Levett,Peng Wang,Shravan Murthy,Shannon Tansley,Siyan Wang,Nadeem Siddiqui,Soroush Tahmasebi,Kobi Rosenblum,Massimo Avoli,Jean-Claude Lacaille,Nahum Sonenberg,Arkady Khoutorsky
Abstract:The mechanistic/mammalian target of rapamycin complex 1 (mTORC1) integrates multiple signals to regulate critical cellular processes such as mRNA translation, lipid biogenesis, and autophagy. Germline and somatic mutations in mTOR and genes upstream of mTORC1, such as PTEN, TSC1/2, AKT3, PIK3CA, and components of GATOR1 and KICSTOR complexes, are associated with various epileptic disorders. Increased mTORC1 activity is linked to the pathophysiology of epilepsy in both humans and animal models, and mTORC1 inhibition suppresses epileptogenesis in humans with tuberous sclerosis and animal models with elevated mTORC1 activity. However, the role of mTORC1-dependent translation and the neuronal cell types mediating the effect of enhanced mTORC1 activity in seizures remain unknown. The eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and 2 (4E-BP2) are translational repressors downstream of mTORC1. Here we show that the ablation of 4E-BP2, but not 4E-BP1, in mice increases the sensitivity to pentylenetetrazole (PTZ)- and kainic acid (KA)–induced seizures. We demonstrate that the deletion of 4E-BP2 in inhibitory, but not excitatory neurons, causes an increase in the susceptibility to PTZ-induced seizures. Moreover, mice lacking 4E-BP2 in parvalbumin, but not somatostatin or VIP inhibitory neurons exhibit a lowered threshold for seizure induction and reduced number of parvalbumin neurons. A mouse model harboring a human PIK3CA mutation that enhances the activity of the PI3K-AKT pathway (Pik3caH1047R-Pvalb) selectively in parvalbumin neurons shows susceptibility to PTZ-induced seizures. Our data identify 4E-BP2 as a regulator of epileptogenesis and highlight the central role of increased mTORC1-dependent translation in parvalbumin neurons in the pathophysiology of epilepsy.

Epilepsy is a prevalent (0.5 to 1% of the general population) (1) heterogeneous neurological disorder affecting all age groups and is characterized by seizures and associated psychological and social stigmas (24). Hyperactivation of the mechanistic/mammalian target of rapamycin (mTOR) pathway has been reported in brain lesions of epileptic patients with neurodevelopmental disorders (5, 6), and human genetic studies have shown that mutations in mTOR (7, 8) and other components of its pathway are linked to epileptogenesis (6, 913). mTOR is a highly conserved serine/threonine protein kinase that forms two distinct complexes: mTORC1 and mTORC2. mTORC1 integrates multiple environmental and intracellular signals to modulate brain functions by controlling key cellular processes such as mRNA translation, nucleotide, lipid and mitochondrial biogenesis, and autophagy (14, 15). Germline or somatic mutations, which result in enhanced mTORC1 activity, including in PIK3CA, PTEN, AKT3, TSC1/2, RHEB, and MTOR, are associated with neurodevelopmental disorders with epilepsy (1623). Recent studies have also identified mutations in mTORC1 upstream amino acid–sensing GATOR1-KICSTOR-Rag GTPase pathways as a common cause of epilepsy (24), revealing that mutations in GATOR1 (DEPDC5, NPRL2, and NPRL3) (25, 26) and KICSTOR (ITFG2, KPTN, SZT2, and C12ORF66) (6, 7, 27) genes are often found in epileptic pathologies. The link between the mTORC1 and epilepsy has been recapitulated in animal models with enhanced mTORC1 activity (e.g., Pten+/−, TSC1/2+/−, and activating mutations in Pik3ca Nestin-Cre knockin (KI), Akt3 KI, MTOR, and Rheb KI) (18, 20, 23, 2831) while inhibition of mTORC1 reversed epileptogenesis in TSC1GFAP-Cre and Pten+/− mice (20, 31). Notably, the mTORC1 rapalog, everolimus, has been approved by the US Food and Drug Administration (FDA) for the treatment of epilepsy in tuberous sclerosis complex (TSC) patients (32, 33).mTORC1 is a master regulator of mRNA translation. Upon activation, mTORC1 phosphorylates S6 protein kinases 1 and 2 (S6K1/2) and 4E-binding proteins (4E-BPs) (34, 35). In the hypophosphorylated form, 4E-BPs bind and prevent the association of the cap-binding protein eIF4E with the large scaffolding protein eIF4G, thereby inhibiting the formation of the eIF4F complex (composed of eIF4E, eIF4G, and an mRNA helicase eIF4A), which is essential for the initiation of cap-dependent translation. Phosphorylation of 4E-BPs by mTORC1 results in the release of eIF4E from 4E-BPs, allowing eIF4F complex formation and initiation of translation (36, 37). Among the three 4E-BP family members (4E-BP1, 4E-BP2, and 4E-BP3), 4E-BP2 is the most abundant paralog in the mammalian brain (38, 39). A recent study (5) has identified aberrant activation of eIF4E as a major mechanism for translational changes in focal malformations of cortical development (FMCD), a condition that is often caused by brain somatic activating mutations in MTOR and presents with intractable epilepsy in children, accompanied by developmental abnormalities and autism spectrum disorder (ASD) (5, 4042). Increased eIF4E activity has a pathogenic role in inducing epileptic seizures in FMCD as eIF4E knockdown prevented spontaneous seizures in mTOR Cys1483Tyr and Leu2427Pro mutant mice (5), which show mTORC1 hyperactivation.Despite the progress in understanding the causal link between enhanced mTORC1 activity and epilepsy, the mTORC1-downstream molecular mechanisms promoting epileptogenesis and the cell types mediating the effect on seizure threshold and severity remain poorly understood. In this work, we investigated the role of two main mTORC1-downstream effectors, 4E-BP1 and 4E-BP2, in regulating seizure susceptibility and studied the neuronal cell types mediating epileptogenic effects. We report that mice with whole-body or parvalbumin neuron–specific deletion of 4E-BP2 exhibit reduced threshold and increased severity of epileptic seizures. Moreover, we show that Pik3caH1047R-Pvalb mutant mice harboring a conditional parvalbumin neuron–specific KI gain-of-function mutation (H1047R) in the PIK3CA kinase domain are prone to seizures. Collectively, these findings demonstrate a central role of 4E-BP2 and parvalbumin neurons in mediating mTORC1-dependent epileptogenesis, thus expanding our understanding of cell type–specific molecular mechanisms of translation dysregulation in epilepsy and other neurodevelopmental disorders.
Keywords:mRNA translation   epilepsy   mTORC1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号