首页 | 本学科首页   官方微博 | 高级检索  
     


Estimating Bias in Population Parameters for Some Models for Repeated Measures Ordinal Data Using NONMEM and NLMIXED
Authors:Siv Jönsson  Maria C. Kjellsson  Mats O. Karlsson
Affiliation:Division of Pharmacokinetics and Drug Therapy, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden.
Abstract:The application of proportional odds models to ordered categorical data using the mixed-effects modeling approach has become more frequently reported within the pharmacokinetic/pharmacodynamic area during the last decade. The aim of this paper was to investigate the bias in parameter estimates, when models for ordered categorical data were estimated using methods employing different approximations of the likelihood integral; the Laplacian approximation in NONMEM (without and with the centering option) and NLMIXED, and the Gaussian quadrature approximations in NLMIXED. In particular, we have focused on situations with non-even distributions of the response categories and the impact of interpatient variability. This is a Monte Carlo simulation study where original data sets were derived from a known model and fixed study design. The simulated response was a four-category variable on the ordinal scale with categories 0, 1, 2 and 3. The model used for simulation was fitted to each data set for assessment of bias. Also, simulations of new data based on estimated population parameters were performed to evaluate the usefulness of the estimated model. For the conditions tested, Gaussian quadrature performed without appreciable bias in parameter estimates. However, markedly biased parameter estimates were obtained using the Laplacian estimation method without the centering option, in particular when distributions of observations between response categories were skewed and when the interpatient variability was moderate to large. Simulations under the model could not mimic the original data when bias was present, but resulted in overestimation of rare events. The bias was considerably reduced when the centering option in NONMEM was used. The cause for the biased estimates appears to be related to the conditioning on uninformative and uncertain empirical Bayes estimate of interindividual random effects during the estimation, in conjunction with the normality assumption.
Keywords:NONMEM  NLMIXED  SAS  Laplacian  Gaussian quadrature  maximum likelihood estimation  ordered categorical  proportional odds model  bias in parameter estimates
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号