首页 | 本学科首页   官方微博 | 高级检索  
     


TRIP13 promotes metastasis of colorectal cancer regardless of p53 and microsatellite instability status
Authors:Sumit Agarwal,Michael Behring,Hyung‐  Gyoon Kim,Darshan S. Chandrashekar,Balabhadrapatruni V. S. K. Chakravarthi,Nirzari Gupta,Prachi Bajpai,Amr Elkholy,Sameer Al Diffalha,Pran K. Datta,Martin J. Heslin,Sooryanarayana Varambally,Upender Manne
Affiliation:1. Department of Pathology, University of Alabama at Birmingham, AL, USA ; 2. Department of Chemistry, University of Alabama at Birmingham, AL, USA ; 3. Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, AL, USA ; 4. Department of Surgery, University of Alabama at Birmingham, AL, USA ; 5. O''Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
Abstract:Overexpression of TRIP13, a member of the AAA‐ATPase family, is linked with various cancers, but its role in metastasis is unknown in colorectal cancer (CRC). In the current study, we investigated the role TRIP13 in experimental metastasis and its involvement in regulation of WNT/β‐catenin and EGFR signaling pathways. Evaluation of formalin‐fixed paraffin‐embedded (FFPE) and frozen tissues of adenomas and CRCs, along with their corresponding normal samples, showed that TRIP13 was gradually increased in its phenotypic expression from adenoma to carcinoma and that its overexpression in CRCs was independent of patient''s gender, age, race/ethnicity, pathologic stage, and p53 and microsatellite instability (MSI) status. Moreover, liver metastases of CRCs showed TRIP13 overexpression as compared to matched adjacent liver tissues, indicating the biological relevance of TRIP13 in CRC progression and metastasis. TRIP13 knockdown impeded colony formation, invasion, motility, and spheroid‐forming capacity of CRC cells irrespective of their p53 and MSI status. Furthermore, xenograft studies demonstrated high expression of TRIP13 contributed to tumor growth and metastasis. Depletion of TRIP13 in CRC cells decreased metastasis and it was independent of the p53 and MSI status. Furthermore, TRIP13 interacted with a tyrosine kinase, FGFR4; this interaction could be essential for activation of the EGFR‐AKT pathway. In addition, we demonstrated the involvement of TRIP13 in the Wnt signaling pathway and in the epithelial–mesenchymal transition. Cell‐based assays revealed that miR‐192 and PNPT1 regulate TRIP13 expression in CRC. Additionally, RNA sequencing of CRC cells with TRIP13 knockdown identified COL6A3, TREM2, SHC3, and KLK7 as downstream targets that may have functional relevance in TRIP13‐mediated tumor growth and metastasis. In summary, our results demonstrated that TRIP13 promotes tumor growth and metastasis regardless of p53 and MSI status, and indicated that it is a target for therapy of CRC.

Abbreviations

CIN
chromosomal instability
CRC
colorectal cancer
EMT
epithelial–mesenchymal transition
FFPE
formalin‐fixed, paraffin‐embedded
LEF
lymphoid enhancer factor
MS
microsatellite
MSI
microsatellite instable
MSS
microsatellite stable
NSG
NOD/SCID/IL2γ receptor‐null
NT
nontargeting
SAC
spindle assembly checkpoint
TCF
T‐cell factor
TRIP13
thyroid hormone receptor interactor 13
UAB
University of Alabama at Birmingham
Keywords:colorectal cancer, EGFR, FGFR4, metastasis, TRIP13, WNT/β    catenin
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号