首页 | 本学科首页   官方微博 | 高级检索  
检索        


Stable metal anodes enabled by a labile organic molecule bonded to a reduced graphene oxide aerogel
Authors:Yue Gao  Daiwei Wang  Yun Kyung Shin  Zhifei Yan  Zhuo Han  Ke Wang  Md Jamil Hossain  Shuling Shen  Atif AlZahrani  Adri C T van Duin  Thomas E Mallouk  Donghai Wang
Institution:aDepartment of Mechanical Engineering, The Pennsylvania State University, University Park, PA, 16802;bDepartment of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104;cSchool of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract:Metallic anodes (lithium, sodium, and zinc) are attractive for rechargeable battery technologies but are plagued by an unfavorable metal–electrolyte interface that leads to nonuniform metal deposition and an unstable solid–electrolyte interphase (SEI). Here we report the use of electrochemically labile molecules to regulate the electrochemical interface and guide even lithium deposition and a stable SEI. The molecule, benzenesulfonyl fluoride, was bonded to the surface of a reduced graphene oxide aerogel. During metal deposition, this labile molecule not only generates a metal-coordinating benzenesulfonate anion that guides homogeneous metal deposition but also contributes lithium fluoride to the SEI to improve Li surface passivation. Consequently, high-efficiency lithium deposition with a low nucleation overpotential was achieved at a high current density of 6.0 mA cm−2. A Li|LiCoO2 cell had a capacity retention of 85.3% after 400 cycles, and the cell also tolerated low-temperature (−10 °C) operation without additional capacity fading. This strategy was applied to sodium and zinc anodes as well.

Rechargeable batteries based on metal anodes including lithium (Li), sodium (Na), and zinc (Zn) show great promise in achieving high energy density (13). Unfortunately, the electrochemical interface of the metal anodes is not favorable for metal deposition. Metal nucleation is inhomogeneous at the surface, leading to the growth of metal dendrites (47) and the formation of an unstable solid–electrolyte interphase (SEI) that is incapable of protecting metals from the side reactions with the electrolyte (812).Substantial efforts have been devoted to stabilizing the interface of metal anodes, especially for Li metal. These include the design of artificial protective layers (1317), alternative electrolytes (1824), and sacrificial additives (2530) to stabilize the metal–electrolyte interface, the development of mechanically robust coatings (3134) to block Li dendrite growth, and the use of structured scaffolds to host dendrite-free Li deposition by reducing local current densities (3543). However, the performance of metal anodes remains poor under high-current or low-temperature conditions. This is because the inhomogeneous Li nucleation and unstable SEI problems have not been well addressed, and these problems at the interface are even exacerbated under critical operating conditions, especially high-current densities and low temperatures (5, 6, 44).Toward this end, we report a simple molecular approach for regulating the electrochemical interface of metal anodes, which enables even Li deposition and stable SEI formation in a conventional electrolyte. This was realized by bonding a labile organic molecule, benzenesulfonyl fluoride (BSF), to a reduced graphene oxide (rGO) aerogel surface as the Li anode host (Fig. 1A). During Li deposition, BSF molecules electrochemically decompose at the interface and generate benzenesulfonate anions bonded to the rGO aerogel (Fig. 1B). The conjugated anions have a strong binding affinity for Li, serving as lithiophilic sites on the rGO surface to synergistically induce homogeneous Li nucleation of Li on the rGO surface. At the same time, BSF molecules contribute LiF to the SEI layer, which facilitates Li surface passivation (Fig. 1C). As a result, high-efficiency (99.2%) Li deposition was achieved at a Li deposition amount of 6.0 mAh cm−2 and a current density of 6.0 mA cm−2; the barrier to Li nucleation was markedly reduced, as evidenced by the low nucleation overpotentials at high-current density (6.0 mA cm−2) or at a low temperature (−10 °C). A 400-cycle life with a capacity retention of 83.6% was achieved for a Li|LiCoO2 (LCO) cell in a conventional carbonate electrolyte. Moreover, with the organic molecule-tuned interface, the Li|LCO cell can be stably cycled at a low operating temperature (−10 °C). This approach was applied to Na and Zn metal anodes as well.Open in a separate windowFig. 1.Illustration of a stable interface for Li deposition using a labile organic molecule, benzenesulfonyl fluoride (BSF). (A) Covalently bonded BSF on the rGO aerogel surface. (B) In situ generation of a lithiophilic conjugated anion (benzenesulfonate) and LiF on the surface during Li deposition. (C) Li nucleation preferentially occurs at the conjugated anion sites owing to the strong Li binding affinity, which leads to uniform Li deposition. In addition, the LiF that is formed is in the SEI layer and passivates the Li surface.
Keywords:electrochemical interface  solid–  electrolyte interphase  metallic anodes  functionalized reduced graphene oxide
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号