Theoretical investigations on the structure and potential binding sites of antineoplaston A10 and experimental findings |
| |
Authors: | D Michalska |
| |
Affiliation: | Institute of Inorganic Chemistry, Technical University of Wroclaw, Poland. |
| |
Abstract: | The essential biological importance of antineoplastons has motivated the present theoretical and experimental studies on the structure and potential binding sites of Antineoplaston A10, 3-phenylacetylamino-2,6-piperidinedione. Semi-empirical molecular orbital calculations SCF-LCAO-MO were performed using the MNDO method. The calculated molecular geometry of A10 is in very good agreement with the recently obtained X-ray structure of synthetic A10. Experimental investigations of the Raman spectra of A10 and its N,N-dideuterated derivative confirm the theoretical predictions concerning the structure and hydrogen bonding of A10. Analysis of calculated charge distribution reveals that the negative charges are localized on the ring nitrogen and on the exocyclic oxygen atoms of A10 and are similar to the corresponding charges computed for some pyrimidine bases. This indicates that Antineoplaston A10 may have similar binding sites. It is concluded that the mechanism of action of Antineoplaston A10 may in part be related to its structural and chemical resemblance with deoxythymidine and uridine. A10 may act as a nucleoside antagonist and interact very closely with adenosine units in nucleic acids and enzymes, which may interfere with protein synthesis in neoplastic cells. |
| |
Keywords: | |
|
|