首页 | 本学科首页   官方微博 | 高级检索  
检索        


Exogenous melatonin administration modifies cutaneous vasoconstrictor response to whole body skin cooling in humans
Authors:Aoki Ken  Zhao Kun  Yamazaki Fumio  Sone Ryoko  Alvarez Guy E  Kosiba Wojciech A  Johnson John M
Institution:Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA;;Department of Hygiene/Space Medicine, Nihon University School of Medicine, Tokyo, Japan;;Department of Clinical Pathophysiology, School of Health Science, University of Occupational and Environmental Health, Kitakyushu, Japan;;Department of Exercise and Health Science, Faculty of Education, University of Yamaguchi, Yamaguchi, Japan
Abstract:Humans and other diurnal species experience a fall in internal temperature (T(int)) at night, accompanied by increased melatonin and altered thermoregulatory control of skin blood flow (SkBF). Also, exogenous melatonin induces a fall in T(int), an increase in distal skin temperatures and altered control of the cutaneous active vasodilator system, suggesting an effect of melatonin on the control of SkBF. To test whether exogenous melatonin also affects the more tonically active vasoconstrictor system in glabrous and nonglabrous skin during cooling, healthy males (n = 9) underwent afternoon sessions of whole body skin temperature (T(sk)) cooling (water-perfused suits) after oral melatonin (Mel; 3 mg) or placebo (Cont). Cutaneous vascular conductance (CVC) was calculated from SkBF (laser Doppler flowmetry) and non-invasive blood pressure. Baseline T(int) was lower in Mel than in Cont (P < 0.01). During progressive reduction of T(sk) from 35 degrees C to 32 degrees C, forearm CVC was first significantly reduced at T(sk) of 34.33 +/- 0.01 degrees C (P < 0.05) in Cont. In contrast, CVC in Mel was not significantly reduced until T(sk) reached 33.33 +/- 0.01 degrees C (P < 0.01). The decrease in forearm CVC in Mel was significantly less than in Cont at T(sk) of 32.66 +/- 0.01 degrees C and lower (P < 0.05). In Mel, palmar CVC was significantly higher than in Cont above T(sk) of 33.33 +/- 0.01 degrees C, but not below. Thus exogenous melatonin blunts reflex vasoconstriction in nonglabrous skin and shifts vasoconstrictor system control to lower T(int). It provokes vasodilation in glabrous skin but does not suppress the sensitivity to falling T(sk). These findings suggest that by affecting the vasoconstrictor system, melatonin has a causal role in the nocturnal changes in body temperature and its control.
Keywords:circadian rhythm  skin blood flow  thermoregulation  vasoconstriction
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号