首页 | 本学科首页   官方微博 | 高级检索  
     

骨科机器人系统全程规划模块在长骨骨折精确牵引中的研究
引用本文:Zhao CP,Wang JQ,Liu WY,Su YG,Zhang LJ,Wang Y,Hu L,Wang MY,Wang TM. 骨科机器人系统全程规划模块在长骨骨折精确牵引中的研究[J]. 中华医学杂志, 2007, 87(43): 3038-3042
作者姓名:Zhao CP  Wang JQ  Liu WY  Su YG  Zhang LJ  Wang Y  Hu L  Wang MY  Wang TM
作者单位:1. 北京积水潭医院创伤骨科,100035
2. 北京航空航天大学机器人研究所
基金项目:国家自然科学基金资助项目(60525314);国家863高技术研究发展计划基金资助项目(2004AA421020);北京市科技计划基金资助项目(H060720050230)
摘    要:目的 评价新设计的骨科机器人系统模块的精度及临床可行性。方法 针对9例塑料胫骨模型,测量拼接图像上的胫骨全长,并同模型的实际长度进行比较,记录差值,统计分析拼接精度。针对1例尸体双下肢胫骨标本,人为制造胫骨骨折(伴有短缩成角畸形),拼接出骨折后的整条胫骨图像,在拼接图像上进行全程规划,确定骨折牵引距离,利用胫骨牵引支架进行自动化的定量闭合牵引,分析该模块的精度和有效性。同时,利用视频相机跟踪牵引动作中胫骨的长度变化,确保牵引过程的安全。针对1例胫骨骨折临床病例,进行拼接、规划和牵引,验证本模块的临床可行性。结果 拼接一幅完整的胫骨图像需要术中采集7—10幅C臂图像,图像拼接精度为1.5mm。图像采集的平均操作时间为1.5min,拼接与规划的时间约为3min,牵引支架安装和牵引操作的平均时间为4min。尸体标本和临床试验在牵引后均达到骨折端复位准确,符合手术要求。结论 科机器人系统全程规划模块能够为长骨骨折治疗提供有效、精确的牵引复位信息。该模块操作简单,并能达到微创手术的目的,同时还大大减少了手术中医生的X线放射损害。

关 键 词:治疗  计算机辅助 骨牵引复位法 图像处理  计算机辅助
修稿时间:2007-04-12

Accurate traction of long bone fracture with full-length planning module of orthopedic robot system: experiments in vitro and in vivo
Zhao Chun-Peng,Wang Jun-Qiang,Liu Wen-Yong,Su Yong-Gang,Zhang Li-Jun,Wang Yu,Hu Lei,Wang Man-Yi,Wang Tian-Miao. Accurate traction of long bone fracture with full-length planning module of orthopedic robot system: experiments in vitro and in vivo[J]. Zhonghua yi xue za zhi, 2007, 87(43): 3038-3042
Authors:Zhao Chun-Peng  Wang Jun-Qiang  Liu Wen-Yong  Su Yong-Gang  Zhang Li-Jun  Wang Yu  Hu Lei  Wang Man-Yi  Wang Tian-Miao
Affiliation:Department of Orthopedics and Traumatology, Jishuitan Hospital,Beijing 100035, China
Abstract:Objective To evaluate the precision in location and clinical flexibility of the newly designed full-length planning module of orthopedic robot system in treatment of fractures of long bone. Methods Nine plastic tibia models were selected for the image mosaicing. The full length of each tibia model was measured on the constructed panorama and compared with the real model length to record the length deviation and conduct the precision analysis. Fracture of tibia and fibula with shortening and angulation deformity was caused on a cadaver specimen with two lower limbs. Full-length planning was carried out on the entire tibial panorama with the fracture. After the reduction distance was determined quantitatively, automatic close traction procedure was carried out with the tibial reduction frame to analyze the precision and effectiveness of this module. At the same time, the relative length variation between the two bone fragments was monitored utilizing video camera to ensure the safety of the reduction operation. Image mosaicing, surgical planning, and bone traction were performed on a clinical case of tibial fracture to validate the clinical feasibility of the module. Results An entire tibial panorama could be constructed from 7 - 10 C-arm images collected during the operation. 1.5 min was needed for image collection. The average mosaicing and planning time was 3 min. The mosaicing error was less than 1.5 mm. The average time for the traction frame installation and traction operation was 4 min. Traction resulted in accurate reposition of the fracture ends meeting the requirement of surgery in both the cadaver specimen and the clinical case. Conclusion The newly designed full-length planning module of orthopedic robot system is easy to use and provides effective and accurate traction result in long bone fracture therapy. This module can not only achieve the minimally invasive surgery, but also dramatically decrease the radiation damage to the medical staff.
Keywords:Therapy computer-assisted   Skeletal tracting reposition   Image processing computer-assisted
本文献已被 维普 万方数据 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号