首页 | 本学科首页   官方微博 | 高级检索  
检索        


Role of platelets and the arachidonic acid pathway in the regulation of neutrophil oxidase activity
Authors:H Herbertsson  T Bengtsson
Institution:1. Division of Cell Biology, Department of Biomedicine and Surgery, Faculty of Health Sciences, Link?ping University, Link?ping, Sweden;2. Division of Medical Microbiology, Department of Health and Environment, Faculty of Health Sciences, Link?ping University, Link?ping, Sweden
Abstract:The intercellular mechanisms involved in platelet-mediated regulation of neutrophil function remain incompletely understood. This study investigated the role of the arachidonic acid pathway in the modulation of chemoattractant-induced production of oxygen metabolites, measured as luminol-amplified chemiluminescence (CL). We demonstrate that platelets dose-dependently inhibit the CL response in neutrophils stimulated with N-formyl-methionyl-leucyl-phenylalanine (fMLP). Incubation with eicosatetrayonic acid (ETYA), a combined cyclooxygenase and lipooxygenase inhibitor, dramatically decreased the fMLP-induced CL response in neutrophils, an effect that was further enhanced in the presence of platelets. The separate effects of eicosatriyonic acid (ETI ) and indomethacin, specific inhibitors of lipoxygenase and cyclooxygenase, respectively, were significantly lower compared to the action of ETYA. On the contrary, impediment of arachidonic acid release with the phospholipase A 2 inhibitor arachidonyl trifluoromethyl ketone (ATK ) markedly increased the production of oxygen radicals triggered by fMLP. The addition of exogenous arachidonic acid clearly decreased the fMLP-induced CL response in neutrophils, which further strengthens a downregulating effect of arachidonic acid on oxidase activity. This inhibitory action of arachidonic acid, however, was reversed upon co-incubation with platelets. In conclusion, this study suggests that an accumulation of arachidonic acid, following chemotactic peptide stimulation, turns off neutrophil oxidase activity. Furthermore, platelets may support the synthesis of reactive arachidonic acid metabolites, which modulate oxygen radical production in neutrophils.
Keywords:Cell-CELL Interaction Eicosanoids Inflammation Leukocyte Oxygen Radicals Respiratory Burst
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号