首页 | 本学科首页   官方微博 | 高级检索  
     


SOCS3 protein developmentally regulates the chemokine receptor CXCR4-FAK signaling pathway during B lymphopoiesis
Authors:Le Yi  Zhu Bing-Mei  Harley Brendan  Park Shin-Young  Kobayashi Takashi  Manis John P  Luo Hongbo R  Yoshimura Akihiko  Hennighausen Lothar  Silberstein Leslie E
Affiliation:Children's Hospital Boston and Joint Program in Transfusion Medicine, Harvard Medical School, Boston, MA 02115, USA.
Abstract:The chemokine CXCL12 induces prolonged focal adhesion kinase (FAK) phosphorylation and sustained proadhesive responses in progenitor bone-marrow (BM) B cells, but not in mature peripheral B cells. Here we demonstrate that suppressor of cytokine signaling 3 (SOCS3) regulated CXCL12-induced FAK phosphorylation through the ubiquitin-proteasome pathway. CXCL12 triggered increased FAK ubiquitination in mature B cells, but not in progenitor B cells. Accordingly, SOCS3 expression was low in progenitor B cells, increased in immature B cells, and highest in mature B cells. SOCS3 overexpression in pro-B cells impaired CXCL12-induced FAK phosphorylation and proadhesive responses. Conversely, SOCS3-deficient mature B cells from Cre(MMTV)Socs3(fl/fl) mice exhibited prolonged FAK phosphorylation and adhesion to VCAM-1. In contrast to wild-type mice, Cre(MMTV)Socs3(fl/fl) mice had a 2-fold increase in immature B cells, which were evenly distributed in endosteal and perisinusoidal BM compartments. We propose that the developmental regulation of CXCR4-FAK signaling by SOCS3 is an important mechanism to control the lodgement of B cell precursors in the BM microenvironment.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号