首页 | 本学科首页   官方微博 | 高级检索  
检索        


Pulmonary retention of particulate matter is associated with airway inflammation in allergic rats exposed to air pollution in urban Detroit
Authors:Morishita Masako  Keeler Gerald  Wagner James  Marsik Frank  Timm Edward  Dvonch J  Harkema Jack
Institution:Air Quality Laboratory, University of Michigan, Ann Arbor, Michigan 48109-2029, USA.
Abstract:A collaborative research study was conducted in order to improve our understanding of the source-to-receptor pathway for ambient fine particulate matter (aerodynamic diameter < or = 2.5 mu m; PM2.5) and subsequently to investigate the identity and sources of toxic components in PM2.5 responsible for adverse health effects in allergic humans. This research used a Harvard fine particle concentrator to expose Brown Norway rats, with and without ovalbumin-induced allergic airway disease, to concentrated air particles (CAPs) generated from ambient air in an urban Detroit community where the pediatric asthma rate was three times higher than the national average. Rats were exposed to CAPs during the exposure periods in July (mean = 676 microg/m3) and September (313 microg/m3) of 2000. Twenty-four hours after exposures lung lobes were either lavaged with saline to determine cellularity and protein in bronchoalveolar lavage fluid (BALF), or removed for analysis by inductively coupled plasma-mass spectrometry (ICP-MS) to detect ambient PM2.5-derived trace element retention. PM2.5 trace elements of anthropogenic origin, lanthanum (La), vanadium (V), manganese (Mn), and sulfur (S), were recovered from the lung tissues of CAPs-exposed rats. Recovery of those pulmonary anthropogenic particles was further increased in rats with allergic airways. In addition, eosinophils and protein in BALF were increased only in allergic animals exposed to CAPs. These results demonstrate preferential retention in allergic airways of air particulates derived from identified local combustion sources after a short-term exposure. Our findings suggest that the enhancement of allergic airway responses by exposure to PM2.5 is mediated in part by increased pulmonary deposition and localization of potentially toxic elements in urban air.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号