首页 | 本学科首页   官方微博 | 高级检索  
检索        


FARP2 triggers signals for Sema3A-mediated axonal repulsion
Authors:Toyofuku Toshihiko  Yoshida Junko  Sugimoto Tamiko  Zhang Hong  Kumanogoh Atsushi  Hori Masatsugu  Kikutani Hitoshi
Institution:Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan. toyofuku@medone.med.osaka-u.ac.jp
Abstract:Sema3A, a prototypical semaphorin, acts as a chemorepellent or a chemoattractant for axons by activating a receptor complex comprising neuropilin-1 as the ligand-binding subunit and plexin-A1 as the signal-transducing subunit. How the signals downstream of plexin-A1 are triggered upon Sema3A stimulation, however, is unknown. Here we show that, in the presence of neuropilin-1, the FERM domain-containing guanine nucleotide exchange factor (GEF) FARP2 associates directly with plexin-A1. Sema3A binding to neuropilin-1 induces the dissociation of FARP2 from plexin-A1, resulting in activation of FARP2's Rac GEF activity, Rnd1 recruitment to plexin-A1, and downregulation of R-Ras. Simultaneously, the FERM domain of FARP2 sequesters phosphatidylinositol phosphate kinase type I isoform PIPKIgamma661 from talin, thereby inhibiting its kinase activity. These activities are required for Sema3A-mediated repulsion of outgrowing axons and suppression of neuronal adhesion. We therefore conclude that FARP2 is a key molecule involved in the response of neuronal growth cones to class-3 semaphorins.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号