首页 | 本学科首页   官方微博 | 高级检索  
     


Calretinin- and parvalbumin-immunoreactive neurons in the rat main olfactory bulb do not express NADPH-diaphorase activity
Authors:J. G. Bri    n, J. R. Alonso, E. Garcí  a-Ojeda, C. Crespo, R. Ar  valo,J. Aij  n
Affiliation:

Departamento de Biología Celular y Patología, Universidad de Salamanca, E-37007 Salamanca, Spain

Abstract:The presence of nitric oxide synthase (NOS) in neuronal elements expressing the calcium-binding proteins calretinin (CR) and parvalbumin (PV) was studied in the rat main olfactory bulb. CR and PV were detected by using immunocytochemistry and the nitric oxide (NO) -synthesizing cells were identified by means of the reduced nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-diaphorase) direct histochemical method. The possible coexistence of NADPH-diaphorase and each calcium-binding protein marker was determined by sequential histochemical-immunohistochemical double-labeling of the same sections. Specific neuronal populations were positive for these three markers. A subpopulation of olfactory fibers and olfactory glomeruli were positive for either NADPH-diaphorase or CR. In the most superficial layers, groups of juxtaglomerular cells, superficial short-axon cells and Van Gehuchten cells demonstrated staining for all three markers. In the deep regions, abundant granule cells were NADPH-diaphorase- and CR-positive and a few were PV-immunoreactive. Scarce deep short-axon cells demonstrated either CR-, PV-, or NADPH-diaphorase staining. Among all these labeled elements, no neuron expressing CR or PV colocalized NADPH-diaphorase staining. The present data contribute to a more detailed classification of the chemically- and morphologically-defined neuronal types in the rodent olfactory bulb. The neurochemical differences support the existence of physiologically distinct groups within morphologically homogeneous populations. Each of these groups would be involved in different modulatory mechanisms of the olfactory information. In addition, the absence of CR and PV in neuronal groups displaying NADPH-diaphorase, which moreover are calmodulin-negative, indicate that the regulation of NOS activity in calmodulin-negative neurons of the rat olfactory bulb is not mediated by CR or PV.
Keywords:olfactory bulb   smelling   parvalbumin   calretinin   reduced nicotinamide adenine dinucleotide phosphate dehydrogenase
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号